The classification of acoustic environments allows for machines to better understand the auditory world around them. The use of deep learning in order to teach machines to discriminate between different rooms is a new area of research. Similarly to other learning tasks, this task suffers from the high-dimensionality and the limited availability of training data. Data augmentation methods have proven useful in addressing this issue in the tasks of sound event detection and scene classification. This paper proposes a method for data augmentation for the task of room classification from reverberant speech. Generative Adversarial Networks (GANs) are trained that generate artificial data as if they were measured in real rooms. This provides additional training examples to the classifiers without the need for any additional data collection, which is time-consuming and often impractical. A representation of acoustic environments is proposed, which is used to train the GANs. The representation is based on a sparse model for the early reflections, a stochastic model for the reverberant tail and a mixing mechanism between the two. In the experiments shown, the proposed data augmentation method increases the test accuracy of a CNN-RNN room classifier from 89.4% to 95.5%.


翻译:声学环境的分类使得机器能够更好地了解周围的听觉世界。使用深层次的学习来教机器区分不同房间是一个新的研究领域。与其他学习任务一样,这项任务也因高维度和培训数据有限而受到影响。数据增强方法已证明有助于在健全的事件探测和场景分类任务中解决这一问题。本文件建议了一种方法,用于从回声讲话中增加房间分类任务的数据。 基因反转网络(GAN)经过培训,产生人工数据,如同在真实房间里测量数据一样。这为分类者提供了额外的培训实例,而无需收集任何额外的数据,而这种数据耗费时间,而且往往不切实际。提出了用于培训GAN的声学环境的表述。该表述基于一种稀疏的早期反省模型、一种回动尾和两种之间混合机制的随机分析模型。在所显示的实验中,拟议的数据增强方法提高了CNN-RNN室分类器的测试精度,从89.4%提高到95.5%。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员