中文知识图谱(Chinese Knowledge Graph),最早起源于Google Knowledge Graph。知识图谱本质上是一种语义 网络。其结点代表实体(entity)或者概念(concept),边代表实体/概念之间的各种语义关系。

    In many applications, it is important to characterize the way in which two concepts are semantically related. Knowledge graphs such as ConceptNet provide a rich source of information for such characterizations by encoding relations between concepts as edges in a graph. When two concepts are not directly connected by an edge, their relationship can still be described in terms of the paths that connect them. Unfortunately, many of these paths are uninformative and noisy, which means that the success of applications that use such path features crucially relies on their ability to select high-quality paths. In existing applications, this path selection process is based on relatively simple heuristics. In this paper we instead propose to learn to predict path quality from crowdsourced human assessments. Since we are interested in a generic task-independent notion of quality, we simply ask human participants to rank paths according to their subjective assessment of the paths' naturalness, without attempting to define naturalness or steering the participants towards particular indicators of quality. We show that a neural network model trained on these assessments is able to predict human judgments on unseen paths with near optimal performance. Most notably, we find that the resulting path selection method is substantially better than the current heuristic approaches at identifying meaningful paths.

    点赞 0
    阅读0+

    Learning low-dimensional embeddings of knowledge graphs is a powerful approach used to predict unobserved or missing edges between entities. However, an open challenge in this area is developing techniques that can go beyond simple edge prediction and handle more complex logical queries, which might involve multiple unobserved edges, entities, and variables. For instance, given an incomplete biological knowledge graph, we might want to predict "em what drugs are likely to target proteins involved with both diseases X and Y?" -- a query that requires reasoning about all possible proteins that {\em might} interact with diseases X and Y. Here we introduce a framework to efficiently make predictions about conjunctive logical queries -- a flexible but tractable subset of first-order logic -- on incomplete knowledge graphs. In our approach, we embed graph nodes in a low-dimensional space and represent logical operators as learned geometric operations (e.g., translation, rotation) in this embedding space. By performing logical operations within a low-dimensional embedding space, our approach achieves a time complexity that is linear in the number of query variables, compared to the exponential complexity required by a naive enumeration-based approach. We demonstrate the utility of this framework in two application studies on real-world datasets with millions of relations: predicting logical relationships in a network of drug-gene-disease interactions and in a graph-based representation of social interactions derived from a popular web forum.

    点赞 0
    阅读1+

    Knowledge graph (KG) refinement mainly aims at KG completion and correction (i.e., error detection). However, most conventional KG embedding models only focus on KG completion with an unreasonable assumption that all facts in KG hold without noises, ignoring error detection which also should be significant and essential for KG refinement.In this paper, we propose a novel support-confidence-aware KG embedding framework (SCEF), which implements KG completion and correction simultaneously by learning knowledge representations with both triple support and triple confidence. Specifically, we build model energy function by incorporating conventional translation-based model with support and confidence. To make our triple support-confidence more sufficient and robust, we not only consider the internal structural information in KG, studying the approximate relation entailment as triple confidence constraints, but also the external textual evidence, proposing two kinds of triple supports with entity types and descriptions respectively.Through extensive experiments on real-world datasets, we demonstrate SCEF's effectiveness.

    点赞 0
    阅读0+

    Incorporating knowledge graph (KG) into recommender system is promising in improving the recommendation accuracy and explainability. However, existing methods largely assume that a KG is complete and simply transfer the "knowledge" in KG at the shallow level of entity raw data or embeddings. This may lead to suboptimal performance, since a practical KG can hardly be complete, and it is common that a KG has missing facts, relations, and entities. Thus, we argue that it is crucial to consider the incomplete nature of KG when incorporating it into recommender system. In this paper, we jointly learn the model of recommendation and knowledge graph completion. Distinct from previous KG-based recommendation methods, we transfer the relation information in KG, so as to understand the reasons that a user likes an item. As an example, if a user has watched several movies directed by (relation) the same person (entity), we can infer that the director relation plays a critical role when the user makes the decision, thus help to understand the user's preference at a finer granularity. Technically, we contribute a new translation-based recommendation model, which specially accounts for various preferences in translating a user to an item, and then jointly train it with a KG completion model by combining several transfer schemes. Extensive experiments on two benchmark datasets show that our method outperforms state-of-the-art KG-based recommendation methods. Further analysis verifies the positive effect of joint training on both tasks of recommendation and KG completion, and the advantage of our model in understanding user preference. We publish our project at https://github.com/TaoMiner/joint-kg-recommender.

    点赞 0
    阅读0+

    We present a family of novel methods for embedding knowledge graphs into real-valued tensors. These tensor-based embeddings capture the ordered relations that are typical in the knowledge graphs represented by semantic web languages like RDF. Unlike many previous models, our methods can easily use prior background knowledge provided by users or extracted automatically from existing knowledge graphs. In addition to providing more robust methods for knowledge graph embedding, we provide a provably-convergent, linear tensor factorization algorithm. We demonstrate the efficacy of our models for the task of predicting new facts across eight different knowledge graphs, achieving between 5% and 50% relative improvement over existing state-of-the-art knowledge graph embedding techniques. Our empirical evaluation shows that all of the tensor decomposition models perform well when the average degree of an entity in a graph is high, with constraint-based models doing better on graphs with a small number of highly similar relations and regularization-based models dominating for graphs with relations of varying degrees of similarity.

    点赞 0
    阅读0+

    Tensor factorization has become an increasingly popular approach to knowledge graph completion(KGC), which is the task of automatically predicting missing facts in a knowledge graph. However, even with a simple model like CANDECOMP/PARAFAC(CP) tensor decomposition, KGC on existing knowledge graphs is impractical in resource-limited environments, as a large amount of memory is required to store parameters represented as 32-bit or 64-bit floating point numbers. This limitation is expected to become more stringent as existing knowledge graphs, which are already huge, keep steadily growing in scale. To reduce the memory requirement, we present a method for binarizing the parameters of the CP tensor decomposition by introducing a quantization function to the optimization problem. This method replaces floating point-valued parameters with binary ones after training, which drastically reduces the model size at run time. We investigate the trade-off between the quality and size of tensor factorization models for several KGC benchmark datasets. In our experiments, the proposed method successfully reduced the model size by more than an order of magnitude while maintaining the task performance. Moreover, a fast score computation technique can be developed with bitwise operations.

    点赞 0
    阅读1+

    Graph-based data models allow for flexible data representation. In particular, semantic data based on RDF and OWL fuels use cases ranging from general knowledge graphs to domain specific knowledge in various technological or scientific domains. The flexibility of such approaches, however, makes programming with semantic data tedious and error-prone. In particular the logics-based data descriptions employed by OWL are problematic for existing error-detecting techniques, such as type systems. In this paper, we present DOTSpa, an advanced integration of semantic data into programming. We embed description logics, the logical foundations of OWL, into the type checking process of a statically typed programming language and provide typed data access through an embedding of the query language SPARQL. In addition, we demonstrate a concrete implementation of the approach, by extending the Scala programming language. We qualitatively compare programs using our approach to equivalent programs using a state-of-the-art library, in terms of how both frameworks aid users in the handling of typical failure scenarios.

    点赞 0
    阅读0+

    Question Answering (QA) systems provide easy access to the vast amount of knowledge without having to know the underlying complex structure of the knowledge. The research community has provided ad hoc solutions to the key QA tasks, including named entity recognition and disambiguation, relation extraction and query building. Furthermore, some have integrated and composed these components to implement many tasks automatically and efficiently. However, in general, the existing solutions are limited to simple and short questions and still do not address complex questions composed of several sub-questions. Exploiting the answer to complex questions is further challenged if it requires integrating knowledge from unstructured data sources, i.e., textual corpus, as well as structured data sources, i.e., knowledge graphs. In this paper, an approach (HCqa) is introduced for dealing with complex questions requiring federating knowledge from a hybrid of heterogeneous data sources (structured and unstructured). We contribute in developing (i) a decomposition mechanism which extracts sub-questions from potentially long and complex input questions, (ii) a novel comprehensive schema, first of its kind, for extracting and annotating relations, and (iii) an approach for executing and aggregating the answers of sub-questions. The evaluation of HCqa showed a superior accuracy in the fundamental tasks, such as relation extraction, as well as the federation task.

    点赞 0
    阅读0+

    Despite improved digital access to scientific publications in the last decades, the fundamental principles of scholarly communication remain unchanged and continue to be largely document-based. The document-oriented workflows in science publication have reached the limits of adequacy as highlighted by recent discussions on the increasing proliferation of scientific literature, the deficiency of peer-review and the reproducibility crisis. In this article, we present first steps towards representing scholarly knowledge semantically with knowledge graphs. We expand the currently popular RDF graph-based knowledge representation formalism to capture annotations, such as provenance information and describe how to manage such knowledge in a graph data base. We report on the results of a first experimental evaluation of the concept and its implementations with the participants of an international conference.

    点赞 0
    阅读0+

    Beyond current conversational chatbots or task-oriented dialogue systems that have attracted increasing attention, we move forward to develop a dialogue system for automatic medical diagnosis that converses with patients to collect additional symptoms beyond their self-reports and automatically makes a diagnosis. Besides the challenges for conversational dialogue systems (e.g. topic transition coherency and question understanding), automatic medical diagnosis further poses more critical requirements for the dialogue rationality in the context of medical knowledge and symptom-disease relations. Existing dialogue systems (Madotto, Wu, and Fung 2018; Wei et al. 2018; Li et al. 2017) mostly rely on data-driven learning and cannot be able to encode extra expert knowledge graph. In this work, we propose an End-to-End Knowledge-routed Relational Dialogue System (KR-DS) that seamlessly incorporates rich medical knowledge graph into the topic transition in dialogue management, and makes it cooperative with natural language understanding and natural language generation. A novel Knowledge-routed Deep Q-network (KR-DQN) is introduced to manage topic transitions, which integrates a relational refinement branch for encoding relations among different symptoms and symptom-disease pairs, and a knowledge-routed graph branch for topic decision-making. Extensive experiments on a public medical dialogue dataset show our KR-DS significantly beats state-of-the-art methods (by more than 8% in diagnosis accuracy). We further show the superiority of our KR-DS on a newly collected medical dialogue system dataset, which is more challenging retaining original self-reports and conversational data between patients and doctors.

    点赞 0
    阅读0+

    This paper presents the construction of a Knowledge Graph about relations between agents in a political system. It discusses the main modeling challenges, with emphasis on the issue of trust and provenance. Implementation decisions are also presented

    点赞 0
    阅读0+

    The key challenge in semi-supervised learning is how to effectively leverage unlabeled data to improve learning performance. The classical label propagation method, despite its popularity, has limited modeling capability in that it only exploits graph information for making predictions. In this paper, we consider label propagation from a graph signal processing perspective and decompose it into three components: signal, filter, and classifier. By extending the three components, we propose a simple generalized label propagation (GLP) framework for semi-supervised learning. GLP naturally integrates graph and data feature information, and offers the flexibility of selecting appropriate filters and domain-specific classifiers for different applications. Interestingly, GLP also provides new insight into the popular graph convolutional network and elucidates its working mechanisms. Extensive experiments on three citation networks, one knowledge graph, and one image dataset demonstrate the efficiency and effectiveness of GLP.

    点赞 0
    阅读0+

    Knowledge graphs are structured representations of real world facts. However, they typically contain only a small subset of all possible facts. Link prediction is a task of inferring missing facts based on existing ones. We propose TuckER, a relatively simple but powerful linear model based on Tucker decomposition of the binary tensor representation of knowledge graph triples. TuckER outperforms all previous state-of-the-art models across standard link prediction datasets. We prove that TuckER is a fully expressive model, deriving the bound on its entity and relation embedding dimensionality for full expressiveness which is several orders of magnitude smaller than the bound of previous state-of-the-art models ComplEx and SimplE. We further show that several previously introduced linear models can be viewed as special cases of TuckER.

    点赞 0
    阅读0+

    Question Answering (QA) systems provide easy access to the vast amount of knowledge without having to know the underlying complex structure of the knowledge. The research community has provided ad hoc solutions to the key QA tasks, including named entity recognition and disambiguation, relation extraction and query building. Furthermore, some have integrated and composed these components to implement many tasks automatically and efficiently. However, in general, the existing solutions are limited to simple and short questions and still do not address complex questions composed of several sub-questions. Exploiting the answer to complex questions is further challenged if it requires integrating knowledge from unstructured data sources, i.e., textual corpus, as well as structured data sources, i.e., knowledge graphs. In this paper, an approach (HCqa) is introduced for dealing with complex questions requiring federating knowledge from a hybrid of heterogeneous data sources (structured and unstructured). We contribute in developing (i) a decomposition mechanism which extracts sub-questions from potentially long and complex input questions, (ii) a novel comprehensive schema, first of its kind, for extracting and annotating relations, and (iii) an approach for executing and aggregating the answers of sub-questions. The evaluation of HCqa showed a superior accuracy in the fundamental tasks, such as relation extraction, as well as the federation task.

    点赞 0
    阅读0+

    We explore the use of a knowledge graphs, that capture general or commonsense knowledge, to augment the information extracted from images by the state-of-the-art methods for image captioning. The results of our experiments, on several benchmark data sets such as MS COCO, as measured by CIDEr-D, a performance metric for image captioning, show that the variants of the state-of-the-art methods for image captioning that make use of the information extracted from knowledge graphs can substantially outperform those that rely solely on the information extracted from images.

    点赞 0
    阅读0+
Top