机器翻译,又称为自动翻译,是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。它是计算语言学的一个分支,是人工智能的终极目标之一,具有重要的科学研究价值。

    We propose BERTScore, an automatic evaluation metric for text generation. Analogous to common metrics, \method computes a similarity score for each token in the candidate sentence with each token in the reference. However, instead of looking for exact matches, we compute similarity using contextualized BERT embeddings. We evaluate on several machine translation and image captioning benchmarks, and show that BERTScore correlates better with human judgments than existing metrics, often significantly outperforming even task-specific supervised metrics.

    点赞 0
    阅读1+

    Previous studies have shown that neural machine translation (NMT) models can benefit from modeling translated (Past) and un-translated (Future) source contents as recurrent states (Zheng et al., 2018). However, the recurrent process is less interpretable. In this paper, we propose to model Past and Future by Capsule Network (Hinton et al.,2011), which provides an explicit separation of source words into groups of Past and Future by the process of parts-to-wholes assignment. The assignment is learned with a novel variant of routing-by-agreement mechanism (Sabour et al., 2017), namely Guided Dynamic Routing, in which what to translate at current decoding step guides the routing process to assign each source word to its associated group represented by a capsule, and to refine the representation of the capsule dynamically and iteratively. Experiments on translation tasks of three language pairs show that our model achieves substantial improvements over both RNMT and Transformer. Extensive analysis further verifies that our method does recognize translated and untranslated content as expected, and produces better and more adequate translations.

    点赞 0
    阅读0+

    Most machine translation systems generate text autoregressively, by sequentially predicting tokens from left to right. We, instead, use a masked language modeling objective to train a model to predict any subset of the target words, conditioned on both the input text and a partially masked target translation. This approach allows for efficient iterative decoding, where we first predict all of the target words non-autoregressively, and then repeatedly mask out and regenerate the subset of words that the model is least confident about. By applying this strategy for a constant number of iterations, our model improves state-of-the-art performance levels for constant-time translation models by over 3 BLEU on average. It is also able to reach 92-95% of the performance of a typical left-to-right transformer model, while decoding significantly faster.

    点赞 0
    阅读0+

    Recent work has shown that visual context improves cross-lingual sense disambiguation for nouns. We extend this line of work to the more challenging task of cross-lingual verb sense disambiguation, introducing the MultiSense dataset of 9,504 images annotated with English, German, and Spanish verbs. Each image in MultiSense is annotated with an English verb and its translation in German or Spanish. We show that cross-lingual verb sense disambiguation models benefit from visual context, compared to unimodal baselines. We also show that the verb sense predicted by our best disambiguation model can improve the results of a text-only machine translation system when used for a multimodal translation task.

    点赞 0
    阅读0+

    Proteins are the workhorses of life and gaining insight on their functions is of paramount importance for applications such as drug design. However, the experimental validation of functions of proteins is highly-resource consuming. Therefore, recently, automated protein function prediction (AFP) using machine learning has gained significant interest. Many of these AFP tools are based on supervised learning models trained using existing gold-standard functional annotations, which are known to be incomplete. The main challenge associated with conducting systematic testing on AFP software is the lack of a test oracle, which determines passing or failing of a test case; unfortunately, due to the incompleteness of gold-standard data, the exact expected outcomes are not well defined for the AFP task. Thus, AFP tools face the \emph{oracle problem}. In this work, we use metamorphic testing (MT) to test nine state-of-the-art AFP tools by defining a set of metamorphic relations (MRs) that apply input transformations to protein sequences. According to our results, we observe that several AFP tools fail all the test cases causing concerns over the quality of their predictions.

    点赞 0
    阅读0+

    The primary visual cortex processes a large amount of visual information, however, due to its large receptive fields, when multiple stimuli fall within one receptive field, there are computational problems. To solve this problem, the visual system uses selective attention, which allocates resources to a specific spatial location, to attend to one of the stimuli in the receptive field. During this process, the center and width of the attending receptive field change. The model presented in the paper, which is extended and altered from Bobier et al., simulates the selective attention between the primary visual cortex, V1, and middle temporal (MT) area. The responses of the MT columns, which encode the target stimulus, are compared to the results of an experiment conducted by Womelsdorf et al. on the receptive field shift and shrinkage in macaque MT area from selective attention. Based on the results, the responses in the MT area are similar to the Gaussian shaped receptive fields found in the experiment. As well, the responses of the MT columns are also measured for accuracy of representing the target visual stimulus and is found to represent the stimulus with a root mean squared error around 0.17 to 0.18. The paper also explores varying model parameters, such as the membrane time constant and maximum firing rates, and how those affect the measurement. This model is a start to modeling the responses of selective attention, however there are still improvements that can be made to better compare with the experiment, produce more accurate responses and incorporate more biologically plausible features.

    点赞 0
    阅读0+

    In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the \emph{oracle problem} and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8\% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies.

    点赞 0
    阅读0+

    Speech translation has traditionally been approached through cascaded models consisting of a speech recognizer trained on a corpus of transcribed speech, and a machine translation system trained on parallel texts. Several recent works have shown the feasibility of collapsing the cascade into a single, direct model that can be trained in an end-to-end fashion on a corpus of translated speech. However, experiments are inconclusive on whether the cascade or the direct model is stronger, and have only been conducted under the unrealistic assumption that both are trained on equal amounts of data, ignoring other available speech recognition and machine translation corpora. In this paper, we demonstrate that direct speech translation models require more data to perform well than cascaded models, and while they allow including auxiliary data through multi-task training, they are poor at exploiting such data, putting them at a severe disadvantage. As a remedy, we propose the use of end-to-end trainable models with two attention mechanisms, the first establishing source speech to source text alignments, the second modeling source to target text alignment. We show that such models naturally decompose into multi-task-trainable recognition and translation tasks and propose an attention-passing technique that alleviates error propagation issues in a previous formulation of a model with two attention stages. Our proposed model outperforms all examined baselines and is able to exploit auxiliary training data much more effectively than direct attentional models.

    点赞 0
    阅读0+

    Data privacy is an important issue for "machine learning as a service" providers. We focus on the problem of membership inference attacks: given a data sample and black-box access to a model's API, determine whether the sample existed in the model's training data. Our contribution is an investigation of this problem in the context of sequence-to-sequence models, which are important in applications such as machine translation and video captioning. We define the membership inference problem for sequence generation, provide an open dataset based on state-of-the-art machine translation models, and report initial results on whether these models leak private information against several kinds of membership inference attacks.

    点赞 0
    阅读0+

    Modern Machine Translation (MT) systems perform consistently well on clean, in-domain text. However most human generated text, particularly in the realm of social media, is full of typos, slang, dialect, idiolect and other noise which can have a disastrous impact on the accuracy of output translation. In this paper we leverage the Machine Translation of Noisy Text (MTNT) dataset to enhance the robustness of MT systems by emulating naturally occurring noise in otherwise clean data. Synthesizing noise in this manner we are ultimately able to make a vanilla MT system resilient to naturally occurring noise and partially mitigate loss in accuracy resulting therefrom.

    点赞 0
    阅读1+

    A spatially "Mt. Fuji" coupled low-density parity check ensemble is a modified version of the original spatially coupled low-density parity check ensemble. It is known that it has almost the same decoding error probability as and require less number of iterations than the original ensemble in the water-fall region if we appropriately choose a parameter $\alpha$. In this paper, we introduce initial conditions of covariance evolution for the spatially "Mt. Fuji" coupled low-density parity check ensemble. Then, we analyze the water-fall performance.

    点赞 0
    阅读0+

    Recent work has shown that visual context improves cross-lingual sense disambiguation for nouns. We extend this line of work to the more challenging task of cross-lingual verb sense disambiguation, introducing the MultiSense dataset of 9,504 images annotated with English, German, and Spanish verbs. Each image in MultiSense is annotated with an English verb and its translation in German or Spanish. We show that cross-lingual verb sense disambiguation models benefit from visual context, compared to unimodal baselines. We also show that the verb sense predicted by our best disambiguation model can improve the results of a text-only machine translation system when used for a multimodal translation task.

    点赞 0
    阅读0+

    Transfer learning approaches for Neural Machine Translation (NMT) train a NMT model on the assisting-target language pair (parent model) which is later fine-tuned for the source-target language pair of interest (child model), with the target language being the same. In many cases, the assisting language has a different word order from the source language. We show that divergent word order adversely limits the benefits from transfer learning when little to no parallel corpus between the source and target language is available. To bridge this divergence, We propose to pre-order the assisting language sentence to match the word order of the source language and train the parent model. Our experiments on many language pairs show that bridging the word order gap leads to significant improvement in the translation quality.

    点赞 0
    阅读1+

    Generalization and reliability of multilingual translation often highly depend on the amount of available parallel data for each language pair of interest. In this paper, we focus on zero-shot generalization---a challenging setup that tests models on translation directions they have not been optimized for at training time. To solve the problem, we (i) reformulate multilingual translation as probabilistic inference, (ii) define the notion of zero-shot consistency and show why standard training often results in models unsuitable for zero-shot tasks, and (iii) introduce a consistent agreement-based training method that encourages the model to produce equivalent translations of parallel sentences in auxiliary languages. We test our multilingual NMT models on multiple public zero-shot translation benchmarks (IWSLT17, UN corpus, Europarl) and show that agreement-based learning often results in 2-3 BLEU zero-shot improvement over strong baselines without any loss in performance on supervised translation directions.

    点赞 0
    阅读0+

    We present and apply two methods for addressing the problem of selecting relevant training data out of a general pool for use in tasks such as machine translation. Building on existing work on class-based language difference models, we first introduce a cluster-based method that uses Brown clusters to condense the vocabulary of the corpora. Secondly, we implement the cynical data selection method, which incrementally constructs a training corpus to efficiently model the task corpus. Both the cluster-based and the cynical data selection approaches are used for the first time within a machine translation system, and we perform a head-to-head comparison. Our intrinsic evaluations show that both new methods outperform the standard Moore-Lewis approach (cross-entropy difference), in terms of better perplexity and OOV rates on in-domain data. The cynical approach converges much quicker, covering nearly all of the in-domain vocabulary with 84% less data than the other methods. Furthermore, the new approaches can be used to select machine translation training data for training better systems. Our results confirm that class-based selection using Brown clusters is a viable alternative to POS-based class-based methods, and removes the reliance on a part-of-speech tagger. Additionally, we are able to validate the recently proposed cynical data selection method, showing that its performance in SMT models surpasses that of traditional cross-entropy difference methods and more closely matches the sentence length of the task corpus.

    点赞 0
    阅读0+
Top