1024 | 最全面试总结,深度学习500问,面试必备【下载】

2018 年 10 月 24 日 机器学习算法与Python学习

深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自有需要的读者。 


下载方式

扫描下方二维码

关注“机器学习成长之路”

回复“深度学习

即可下载


目录如下:


下载方式

扫描下方二维码

关注“机器学习成长之路”

回复“深度学习

即可下载


推荐阅读

800万中文词,腾讯AI Lab开源大规模NLP数据集

量化投资重磅上线,横扫金融界就靠你啦!

【代码集合】深度强化学习Pytorch实现集锦

pandas入门教程

10 张令人喷饭的程序员漫画

【资源】机器学习算法工程师手册(PDF下载)

源码 | Python爬虫之网易云音乐下载

548页MIT强化学习教程,收藏备用【PDF下载】


登录查看更多
点赞 0

This paper proposes a Region-based Convolutional Recurrent Neural Network (R-CRNN) for audio event detection (AED). The proposed network is inspired by Faster-RCNN, a well known region-based convolutional network framework for visual object detection. Different from the original Faster-RCNN, a recurrent layer is added on top of the convolutional network to capture the long-term temporal context from the extracted high level features. While most of the previous works on AED generate predictions at frame level first, and then use post-processing to predict the onset/offset timestamps of events from a probability sequence; the proposed method generates predictions at event level directly and can be trained end-to-end with a multitask loss, which optimizes the classification and localization of audio events simultaneously. The proposed method is tested on DCASE 2017 Challenge dataset. To the best of our knowledge, R-CRNN is the best performing single-model method among all methods without using ensembles both on development and evaluation sets. Compared to the other region-based network for AED (R-FCN) with an event-based error rate (ER) of 0.18 on the development set, our method reduced the ER to half.

点赞 0
阅读1+
Top