【ICML2020硬货】图神经网络基准,53页ppt,NUS-Xavier Bresson

7 月 18 日 专知
【ICML2020硬货】图神经网络基准,53页ppt,NUS-Xavier Bresson

ICML2020 图表示学习论坛上,NUS Xavier Bresson副教授做了关于《图神经网络基准》的报告,非常干货!

https://grlplus.github.io/schedule/


论文 :Benchmarki ng Graph Neural Networks

  • 作者:Vijay Prakash Dwivedi、Chaitanya K. Joshi、Yoshua Bengio 等

  • 论文链接:https://arxiv.org/pdf/2003.00982.pdf


摘要: 近期的大量研究已经让我们看到了图神经网络模型(GNN)的强大潜力,很多研究团队都在不断改进和构建基础模块。但大多数研究使用的数据集都很小,如 Cora 和 TU。在这种情况下,即使是非图神经网络的性能也是可观的。如果进行进一步的比较,使用中等大小的数据集,图神经网络的优势才能显现出来。

在斯坦福图神经网络大牛 Jure 等人发布《Open Graph Benchmark》之后,又一个旨在构建「图神经网络的 ImageNet」的研究出现了。近日,来自南洋理工大学、洛约拉马利蒙特大学、蒙特利尔大学和 MILA 等机构的论文被提交到了论文预印版平台上,在该研究中,作者一次引入了六个中等大小的基准数据集(12k-70k 图,8-500 节点),并对一些有代表性的图神经网络进行了测试。除了只用节点特征的基准线模型之外,图神经网络分成带或不带对边对注意力两大类。GNN 研究社区一直在寻求一个共同的基准以对新模型的能力进行评测,这一工具或许可以让我们实现目标。

专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“BGNN” 可以获取《图神经网络基准,53页ppt》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

近期的大量研究已经让我们看到了图神经网络模型(GNN)的强大潜力,很多研究团队都在不断改进和构建基础模块。但大多数研究使用的数据集都很小,如 Cora 和 TU。在这种情况下,即使是非图神经网络的性能也是可观的。如果进行进一步的比较,使用中等大小的数据集,图神经网络的优势才能显现出来。

在斯坦福图神经网络大牛 Jure 等人发布《Open Graph Benchmark》之后,又一个旨在构建「图神经网络的 ImageNet」的研究出现了。近日,来自南洋理工大学、洛约拉马利蒙特大学、蒙特利尔大学和 MILA 等机构的论文被提交到了论文预印版平台上,在该研究中,作者一次引入了六个中等大小的基准数据集(12k-70k 图,8-500 节点),并对一些有代表性的图神经网络进行了测试。除了只用节点特征的基准线模型之外,图神经网络分成带或不带对边对注意力两大类。GNN 研究社区一直在寻求一个共同的基准以对新模型的能力进行评测,这一工具或许可以让我们实现目标。

成为VIP会员查看完整内容
0
20

在ICML2020 图表示学习论坛上,NUS Xavier Bresson副教授做了关于《图神经网络基准》的报告,非常干活!

论文 :Benchmarking Graph Neural Networks

作者:Vijay Prakash Dwivedi、Chaitanya K. Joshi、Yoshua Bengio 等

论文链接:https://arxiv.org/pdf/2003.00982.pdf

摘要:近期的大量研究已经让我们看到了图神经网络模型(GNN)的强大潜力,很多研究团队都在不断改进和构建基础模块。但大多数研究使用的数据集都很小,如 Cora 和 TU。在这种情况下,即使是非图神经网络的性能也是可观的。如果进行进一步的比较,使用中等大小的数据集,图神经网络的优势才能显现出来。

在斯坦福图神经网络大牛 Jure 等人发布《Open Graph Benchmark》之后,又一个旨在构建「图神经网络的 ImageNet」的研究出现了。近日,来自南洋理工大学、洛约拉马利蒙特大学、蒙特利尔大学和 MILA 等机构的论文被提交到了论文预印版平台上,在该研究中,作者一次引入了六个中等大小的基准数据集(12k-70k 图,8-500 节点),并对一些有代表性的图神经网络进行了测试。除了只用节点特征的基准线模型之外,图神经网络分成带或不带对边对注意力两大类。GNN 研究社区一直在寻求一个共同的基准以对新模型的能力进行评测,这一工具或许可以让我们实现目标。

成为VIP会员查看完整内容
0
41
小贴士
相关论文
Seongjun Yun,Minbyul Jeong,Raehyun Kim,Jaewoo Kang,Hyunwoo J. Kim
4+阅读 · 2月5日
Heterogeneous Deep Graph Infomax
Yuxiang Ren,Bo Liu,Chao Huang,Peng Dai,Liefeng Bo,Jiawei Zhang
7+阅读 · 2019年11月19日
Position-aware Graph Neural Networks
Jiaxuan You,Rex Ying,Jure Leskovec
6+阅读 · 2019年6月11日
Feature Denoising for Improving Adversarial Robustness
Cihang Xie,Yuxin Wu,Laurens van der Maaten,Alan Yuille,Kaiming He
14+阅读 · 2018年12月9日
Marvin Teichmann,Andre Araujo,Menglong Zhu,Jack Sim
14+阅读 · 2018年12月4日
End-to-End Text Classification via Image-based Embedding using Character-level Networks
Shunsuke Kitada,Ryunosuke Kotani,Hitoshi Iyatomi
5+阅读 · 2018年10月10日
Zhou Yin,Wei-Shi Zheng,Ancong Wu,Hong-Xing Yu,Hai Wang,Jianhuang Lai
7+阅读 · 2018年2月6日
Wen Hua Lin,Kuan-Ting Chen,Hung Yueh Chiang,Winston Hsu
4+阅读 · 2018年1月31日
Navaneeth Bodla,Gang Hua,Rama Chellappa
8+阅读 · 2018年1月17日
Federico Camerlenghi,David B. Dunson,Antonio Lijoi,Igor Prünster,Abel Rodríguez
4+阅读 · 2018年1月15日
Top