六篇 CIKM 2019 最新公布的【图神经网络(GNN)】长文论文

2019 年 10 月 22 日 专知
六篇 CIKM 2019 最新公布的【图神经网络(GNN)】长文论文

【导读】CIKM 2019 (International Conference on Information and Knowledge Management) 将于2019年11月3日至2019年11月7日在北京举行,今年会议主题是 "AI for Future Life"。CIKM是数据库、数据挖掘与内容检索领域的旗舰会议。CIKM 2019共计收到1030篇长文有效投稿,其中200篇论文被大会录用,总录用率约19.4%。图神经网络(GNN)相关的论文依然很火爆,小编在官网上查看了,CIKM专门有专题,大约10篇长文接受为GNN专题论文。为此,专知小编提前为大家筛选了六篇GNN 长文论文供参考和学习!

ICLR2020GNNEMNLP2019GNNICCV2019GNN_Part2ICCV2019GNN_Part1NIPS2019GNNIJCAI2019GNN_Part1IJCAI2019GNN_Part2、 KDD2019GNNACL2019GNNCVPR2019GNNICML2019GNN

1. Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction

作者:Zekun Li,Zeyu Cui,Shu Wu,Xiaoyu Zhang,Liang Wang;

摘要:点击率(CTR)预测是在线广告和推荐系统等网络应用中的一项重要任务,其特点是多领域的。该任务的关键是对不同特征field之间的特征交互进行建模。最近提出的基于深度学习的模型遵循了一种通用的范式:首先将原始的稀疏输入multi-filed特征映射到密集的field嵌入向量中,然后简单地将其连接到深度神经网络(DNN)或其他专门设计的网络中,以学习高阶特征交互。然而,特征field的简单非结构化组合将不可避免地限制以足够灵活和显式的方式建模不同field之间复杂交互的能力。

在这项工作中,我们提出在一个图结构中直观地表示multi-field的特征,其中每个节点对应一个特征field,不同的field可以通过边进行交互。因此,建模特征交互的任务可以转换为对相应图上的节点交互进行建模。为此,我们设计了一个新的模型-Feature Interaction Graph Neural Networks (Fi-GNN)。利用图的强表征性,我们的模型不仅可以灵活、明确地对复杂的特征交互进行建模,而且可以为CTR预测提供良好的模型解释。在两个真实数据集上的实验结果显示了它的优越性。

网址:

https://arxiv.org/abs/1910.05552

2. Graph Convolutional Networks with Motif-based Attention

作者:John Boaz Lee,Ryan A. Rossi,Xiangnan Kong,Sungchul Kim,Eunyee Koh,Anup Rao;

摘要:深度卷积神经网络在计算机视觉和语音识别领域的成功,使得研究人员开始研究该体系结构对图结构数据的泛化。最近提出的一种称为图卷积网络的方法能够在节点分类方面取得最新的成果。然而,由于所提出的方法依赖于spectral图卷积的局部一阶近似,因此无法捕获图中节点间的高阶相互作用。在这项工作中,我们提出了一个motif-based的图注意力模型,称为Motif Convolutional Networks,它通过使用加权多跳motif邻接矩阵来捕获高阶邻域,从而泛华了过去的方法。一个新的注意力机制被用来允许每个单独的节点选择最相关的邻居来应用它的过滤器。我们在不同领域(社会网络和生物信息学)的图上评估了我们的方法,结果表明它能够在半监督节点分类任务上胜过一组有竞争力的基准方法。其他结果证明了attention的有用性,表明不同的节点对不同的高阶邻域进行了优先排序。

网址:

http://ryanrossi.com/pubs/motif-attention-CIKM19.pdf

3. Gravity-Inspired Graph Autoencoders for Directed Link Prediction

作者:Guillaume Salha,Stratis Limnios,Romain Hennequin,Viet Anh Tran,Michalis Vazirgian;

摘要:图自编码器(AE)和变分自编码器(VAE)是近年来出现的强有力的节点嵌入方法。特别是利用图AE和VAE成功地解决了具有挑战性的链路预测问题,目的是找出图上的一些节点对是否被未观察到的边所连接。然而,这些模型侧重于无向图,因此忽略了链接的潜在方向,这限制了许多实际应用程序。在本文中,我们扩展了graph AE和VAE框架来解决有向图中的链路预测问题。我们提出了一种新的gravity-inspired的解码器方案,可以有效地从节点嵌入中重建有向图。我们对标准graph AE和VAE表现较差的三种不同定向链路预测任务进行了实证评价。我们在三个真实世界的图上获得了具有竞争力的结果,超过了几个流行的baseline。

网址:

https://arxiv.org/abs/1905.09570

4. Hashing Graph Convolution for Node Classification

作者:Wenting Zhao, Zhen Cui, Chunyan Xu, Chengzheng Li, Tong Zhang,Jian Yang;

摘要:图数据卷积在non-gridded数据中的应用引起了人们的极大兴趣。为了克服相邻节点的排序和数量的影响,在以往的研究中,往往对局部接受域进行summing/average diffusion/aggregation。然而,这种压缩成一个节点的方法容易造成节点间的signal entanglement,导致次优特征信息,降低了节点的可分辨性。针对这一问题,本文提出了一种简单而有效的哈希图卷积(HGC)方法,该方法通过在节点聚合中使用全局哈希和局部投影来进行节点分类。与传统的完全collision聚合相比,hash-projection可以大大降低相邻节点聚合时的collision概率。我们认为基于hash-projection的方法可以更好地保持甚至增加局部区域的原始差异,并得到进一步的改进。hash-projection的另一个附带效果是将每个节点的接受域归一化为一个共同大小的bucket空间,不仅避免了大小不同的邻居节点及其顺序的麻烦,而且使图卷积运行起来就像标准的shape-girded卷积一样。考虑到训练样本较小,我们在HGC中引入预测一致性正则化项来约束图中未标记节点的得分一致性。HGC在transductive和inductive实验环境下进行评估。在节点分类任务上的大量实验表明,hash-projection确实可以提高性能,我们的HGC在所有实验数据集上都取得了最新最好的结果。

网址:

https://easychair.org/publications/preprint/lhT3

5. Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach

作者:Changjun Fan,Li Zeng,Yuhui Ding,Muhao Chen,Yizhou Sun,Zhong Liu;

摘要:

Betweenness centrality (BC)是网络分析中广泛使用的一种中心性度量,它试图通过最短路径的比例来描述网络中节点的重要性。它是许多有价值的应用的关键,包括社区检测和网络拆除。由于时间复杂度高,在大型网络上计算BC分数在计算上具有挑战性。许多基于采样的近似算法被提出以加速BC的估计。然而,这些方法在大规模网络上仍然需要相当长的运行时间,并且它们的结果对网络的微小扰动都很敏感。

在这篇论文中,我们主要研究如何有效识别图中BC最高的top k节点,这是许多网络应用程序所必须完成的任务。与以往的启发式方法不同,我们将该问题转化为一个学习问题,并设计了一个基于encoder-decoder的框架作为解决方案。具体来说,encoder利用网络结构将每个节点表示为一个嵌入向量,该嵌入向量捕获节点的重要结构信息。decoder将每个嵌入向量转换成一个标量,该标量根据节点的BC来标识节点的相对rank。我们使用pairwise ranking损失来训练模型,以识别节点的BC顺序。通过对小规模网络的训练,该模型能够为较大网络的节点分配相对BC分数,从而识别出高排名的节点。在合成网络和真实世界网络上的实验表明,与现有的baseline相比,我们的模型在没有显著牺牲准确性的情况下大大加快了预测速度,甚至在几个大型真实世界网络的准确性方面超过了最先进的水平。

网址:

https://arxiv.org/abs/1905.10418

6. Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation

作者:Fengli Xu,Jianxun Lian,Zhenyu Han,Yong Li,Yujian Xu,Xing Xie;

摘要:近年来,agent-initiated社交电子商务模式取得了巨大的成功,这种模式鼓励用户成为销售代理商,通过他们的社交关系来推广商品。这种类型的社交电子商务中的复杂交互可以表述为异构信息网络(HIN),其中三种节点之间的关系有多种类型,分别为用户、销售代理和商品。学习高质量的节点嵌入是研究的重点,图卷积网络(GCNs)是近年来发展起来的最先进的表示学习方法。然而,现有的GCN模型在建模异构关系和有效地从大量邻域中采样相关接收域方面都存在基本的局限性。为了解决这些问题,我们提出了RecoGCN(a RElation-aware CO-attentive GCN model)来有效地聚合HIN中的异构特征。它弥补了目前GCN在使用关系感知聚合器建模异构关系方面的局限性,并利用语义感知元路径为每个节点开辟简洁和相关的接受域。为了有效地融合从不同元路径中学习到的嵌入,我们进一步提出了一种co-attentive机制,通过关注用户、销售代理和商品之间的三种交互来动态地为不同的元路径分配重要性权重。在真实数据集上的大量实验表明,RecoGCN能够学习HIN中有意义的节点嵌入,并且在推荐任务中始终优于baseline方法。

网址:

https://www.microsoft.com/en-us/research/uploads/prod/2019/09/CIKM19-recogcn.pdf

请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“CIKM2019GNN” 就可以获取《六篇论文的下载链接~ 

-END-
专 · 知


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
请加专知小助手微信(扫一扫如下二维码添加), 获取专知VIP会员码 ,加入专知人工智能主题群,咨询技术商务合作~
点击“阅读原文”,了解注册成为 专知VIP会员
登录查看更多
74

相关内容

第28届ACM国际信息和知识管理会议(CIKM)将于2019年11月3日至7日在中国北京举行。 2019年我们的主题是“未来生活的人工智能”。 在战略上定位于知识,信息和数据管理研究的交叉点, CIKM的地理位置独特,可以突出体现大数据和人工智能未来愿景的技术和见解。

【导读】ICML(International Conference on Machine Learning),即国际机器学习大会, 是机器学习领域全球最具影响力的学术会议之一,因此在该会议上发表论文的研究者也会备受关注。因疫情的影响, 今年第37届ICML大会将于2020年7月13日至18日在线上举行。据官方统计,ICML 2020共提交4990篇论文,接收论文1088篇,接收率为21.8%。与往年相比,接收率逐年走低。在会议开始前夕,专知小编为大家整理了ICML 2020图神经网络(GNN)的六篇相关论文供参考——核GNN、特征变换、Haar 图池化、无监督图表示、谱聚类、自监督GCN。

ICML 2020 Accepted Papers https://icml.cc/Conferences/2020/AcceptedPapersInitial

ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN

1. Convolutional Kernel Networks for Graph-Structured Data

作者:Dexiong Chen, Laurent Jacob, Julien Mairal

摘要:我们引入了一系列多层图核,并在图卷积神经网络和核方法之间建立了新的联系。我们的方法通过将图表示为核特征映射序列将卷积核网络推广到图结构数据,其中每个节点携带关于局部图子结构的信息。一方面,核的观点提供了一种无监督的、有表现力的、易于正规化的数据表示,这在样本有限的情况下很有用。另一方面,我们的模型也可以在大规模数据上进行端到端的训练,从而产生了新型的图卷积神经网络。我们的方法在几个图分类基准上取得了与之相当的性能,同时提供了简单的模型解释。

网址: https://arxiv.org/abs/2003.05189

代码链接: https://github.com/claying/GCKN

2. GNN-FILM: Graph Neural Networks with Feature-Wise Linear Modulation 作者:Marc Brockschmidt

摘要:本文提出了一种新的基于特征线性调制(feature-wise linear modulation,FiLM)的图神经网络(GNN)。许多标准GNN变体仅通过每条边的源的表示来计算“信息”,从而沿着图的边传播信息。在GNN-FILE中,边的目标节点的表示被附加地用于计算可以应用于所有传入信息的变换,从而允许对传递的信息进行基于特征的调制。基于基线方法的重新实现,本文给出了在文献中提到的三个任务上的不同GNN体系结构的实验结果。所有方法的超参数都是通过广泛的搜索找到的,产生了一些令人惊讶的结果:基线模型之间的差异比文献报道的要小。尽管如此,GNN-FILE在分子图的回归任务上的表现优于基线方法,在其他任务上的表现也具有竞争性。

网址: https://arxiv.org/abs/1906.12192

3. Haar Graph Pooling

作者:Yu Guang Wang, Ming Li, Zheng Ma, Guido Montufar, Xiaosheng Zhuang, Yanan Fan

摘要:深度图神经网络(GNNs)是用于图分类和基于图的回归任务的有效模型。在这些任务中,图池化是GNN适应不同大小和结构的输入图的关键因素。本文提出了一种新的基于压缩Haar变换的图池化操作-HaarPooling。HaarPooling实现了一系列池化操作;它是通过跟随输入图的一系列聚类序列来计算的。HaarPooling层将给定的输入图变换为节点数较小、特征维数相同的输出图;压缩Haar变换在Haar小波域中过滤出细节信息。通过这种方式,所有HaarPooling层一起将任何给定输入图的特征合成为大小一致的特征向量。这种变换提供了数据的稀疏表征,并保留了输入图的结构信息。使用标准图卷积层和HaarPooling层实现的GNN在各种图分类和回归问题上实现了最先进的性能。

网址: https://arxiv.org/abs/1909.11580

4. Interferometric Graph Transform: a Deep Unsupervised Graph Representation 作者:Edouard Oyallon

摘要:我们提出了Interferometric Graph Transform(IGT),这是一类用于构建图表示的新型深度无监督图卷积神经网络。我们的第一个贡献是提出了一种从欧几里德傅立叶变换的推广得到的通用复数谱图结构。基于一个新颖的贪婪凹目标,我们的学习表示既包括可区分的特征,也包括不变的特征。通过实验可以得到,我们的学习过程利用了谱域的拓扑,这通常是谱方法的一个缺陷,特别是我们的方法可以恢复视觉任务的解析算子。我们在各种具有挑战性的任务上测试了我们的算法,例如图像分类(MNIST,CIFAR-10)、社区检测(Authorship,Facebook graph)和3D骨架视频中的动作识别(SBU,NTU),在谱图非监督环境下展示了一种新的技术水平。

网址:

https://arxiv.org/abs/2006.05722

5. Spectral Clustering with Graph Neural Networks for Graph Pooling

作者:Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi

摘要:谱聚类(SC)是发现图上强连通社区的一种流行的聚类技术。SC可以在图神经网络(GNN)中使用,以实现聚合属于同一簇的节点的池化操作。然而,Laplacian的特征分解代价很高,而且由于聚类结果是特定于图的,因此基于SC的池化方法必须对每个新样本执行新的优化。在本文中,我们提出了一种图聚类方法来解决SC的这些局限性。我们建立了归一化minCUT问题的连续松弛公式,并训练GNN来计算最小化这一目标的簇分配。我们的基于GNN的实现是可微的,不需要计算谱分解,并且学习了一个聚类函数,可以在样本外的图上快速评估。从提出的聚类方法出发,我们设计了一个图池化算子,它克服了现有图池化技术的一些重要局限性,并在多个监督和非监督任务中取得了最好的性能。

网址: https://arxiv.org/abs/1907.00481

6. When Does Self-Supervision Help Graph Convolutional Networks?

作者:Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

摘要:自监督作为一种新兴的技术已被用于训练卷积神经网络(CNNs),以提高图像表示学习的可传递性、泛化能力和鲁棒性。然而,自监督对操作图形数据的图卷积网络(GCNS)的介绍却很少被探索。在这项研究中,我们首次将自监督纳入GCNS的系统探索和评估。我们首先阐述了将自监督纳入GCNS的三种机制,分析了预训练&精调和自训练的局限性,并进而将重点放在多任务学习上。此外,我们还提出了三种新的GCNS自监督学习任务,并进行了理论分析和数值比较。最后,我们进一步将多任务自监督融入到图对抗性训练中。研究结果表明,通过合理设计任务形式和合并机制,自监督有利于GCNS获得更强的泛化能力和鲁棒性。

网址: https://arxiv.org/abs/2006.09136

代码链接: https://github.com/Shen-Lab/SS-GCNs

成为VIP会员查看完整内容
0
108

【导读】计算语言学协会(the Association for Computational Linguistics, ACL)年度会议作为顶级的国际会议,在计算语言学和自然语言处理领域一直备受关注。其接收的论文覆盖了语义分析、文本挖掘、信息抽取、问答系统、机器翻译、情感分析和意见挖掘等众多自然语言处理领域的研究方向。今年,第58届计算语言学协会(the Association for Computational Linguistics, ACL)年度会议将于2020年7月5日至10日在美国华盛顿西雅图举行。受COVID-19疫情影响,ACL 2020将全部改为线上举行。本次ACL大会共提交了3429篇论文,共有571篇长论文、以及208篇短论文入选。不久之前,专知小编为大家整理了大会的图神经网络(GNN)相关论文,这期小编继续为大家奉上ACL 2020图神经网络(GNN)相关论文-Part 2供参考——多文档摘要、多粒度机器阅读理解、帖子争议检测、GAE。

ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN

1. Leveraging Graph to Improve Abstractive Multi-Document Summarization

作者:Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, Junping Du

摘要:捕捉文本单元之间关系图对于从多个文档中检测显著信息和生成整体连贯的摘要有很大好处。本文提出了一种神经抽取多文档摘要(MDS)模型,该模型可以利用文档的常见图表示,如相似度图和话语图(discourse graph),来更有效地处理多个输入文档并生成摘要。我们的模型使用图对文档进行编码,以捕获跨文档关系,这对于总结长文档至关重要。我们的模型还可以利用图来指导摘要的生成过程,这有利于生成连贯而简洁的摘要。此外,预训练的语言模型可以很容易地与我们的模型相结合,进一步提高了摘要的性能。在WikiSum和MultiNews数据集上的实验结果表明,所提出的体系结构在几个强大的基线上带来了实质性的改进。

网址: https://arxiv.org/abs/2005.10043

2. Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension

作者:Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan, Wanxiang Che, Daxin Jiang, Ming Zhou, Ting Liu

摘要:“自然问题”是一种具有挑战性的新的机器阅读理解基准,其中包含两个答案:长答案(通常是一个段落)和短答案(长答案中的一个或多个实体)。尽管此基准测试的现有方法很有效,但它们在训练期间单独处理这两个子任务,忽略了它们间的依赖关系。为了解决这个问题,我们提出了一种新颖的多粒度机器阅读理解框架,该框架专注于对文档的分层性质进行建模,这些文档具有不同的粒度级别:文档、段落、句子和词。我们利用图注意力网络来获得不同层次的表示,以便它们可以同时学习。长答案和短答案可以分别从段落级表示和词级表示中提取。通过这种方式,我们可以对两个粒度的答案之间的依赖关系进行建模,以便为彼此提供证据。我们联合训练这两个子任务,实验表明,我们的方法在长答案和短答案标准上都明显优于以前的系统。

网址: https://arxiv.org/abs/2005.05806

代码链接:

https://github.com/DancingSoul/NQ_BERT-DM

3. Integrating Semantic and Structural Information with Graph Convolutional Network for Controversy Detection

作者:Lei Zhong, Juan Cao, Qiang Sheng, Junbo Guo, Ziang Wang

摘要:识别社交媒体上有争议的帖子是挖掘公众情绪、评估事件影响、缓解两极分化观点的基础任务。然而,现有的方法不能1)有效地融合来自相关帖子内容的语义信息;2)保留回复关系建模的结构信息;3)正确处理与训练集中主题不同的帖子。为了克服前两个局限性,我们提出了主题-帖子-评论图卷积网络(TPC-GCN),它综合了来自主题、帖子和评论的图结构和内容的信息,用于帖子级别的争议检测。对于第三个限制,我们将模型扩展到分离的TPC-GCN(DTPC-GCN),将主题相关和主题无关的特征分离出来,然后进行动态融合。在两个真实数据集上的大量实验表明,我们的模型优于现有的方法。结果和实例分析表明,该模型能够将语义信息和结构信息有机地结合在一起,具有较强的通用性。

网址: https://arxiv.org/abs/2005.07886

4. Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward

作者:Luyang Huang, Lingfei Wu, Lu Wang

摘要:用于抽取摘要的序列到序列(sequence-to-sequence )模型已经被广泛研究,但是生成的摘要通常受到捏造的内容的影响,并且经常被发现是near-extractive的。我们认为,为了解决这些问题,摘要生成器应通过输入获取语义解释,例如通过结构化表示,以允许生成更多信息的摘要。在本文中,我们提出了一种新的抽取摘要框架--Asgard,它具有图形增强和语义驱动的特点。我们建议使用双重编码器-序列文档编码器和图形结构编码器-来保持实体的全局上下文和局部特征,并且相互补充。我们进一步设计了基于多项选择完形填空测试的奖励,以驱动模型更好地捕捉实体交互。结果表明,我们的模型在纽约时报和CNN/每日邮报的数据集上都比没有知识图作为输入的变体产生了更高的Rouge分数。与从大型预训练的语言模型中优化的系统相比,我们也获得了更好或可比的性能。评委进一步认为我们的模型输出信息更丰富,包含的不实错误更少。

网址: https://arxiv.org/abs/2005.01159

5. A Graph Auto-encoder Model of Derivational Morphology

作者:Valentin Hofmann, Hinrich Schutze, Janet B. Pierrehumberty

摘要:关于派生词的形态良好性(morphological well-formedness, MWF)建模工作在语言学中被认为是一个复杂而困难的问题,并且这方面的研究工作较少。我们提出了一个图自编码器学习嵌入以捕捉派生词中词缀和词干的兼容性信息。自编码器通过将句法和语义信息与来自心理词典的关联信息相结合,很好地模拟了英语中的MWF。

网址: http://www.phon.ox.ac.uk/jpierrehumbert/publications/Hofmann_etal_DGA_ACL2020.pdf

成为VIP会员查看完整内容
0
84

【导读】作为CCF推荐的A类国际学术会议,International ACM SIGIR Conference on Research and Development in Information Retrieval(国际计算机学会信息检索大会,简称 SIGIR)在信息检索领域享有很高的学术声誉,每年都会吸引全球众多专业人士参与。今年的 SIGIR 2020计划将于 2020年7月25日~30日在中国西安举行。本次大会共有555篇长文投稿,仅有147篇长文被录用,录用率约26%。专知小编提前为大家整理了六篇SIGIR 2020 基于图神经网络的推荐(GNN+RS)相关论文,这六篇论文分别出自中科大何向南老师和和昆士兰大学阴红志老师团队,供大家参考——捆绑推荐、Disentangled GCF、服装推荐、多行为推荐、全局属性GNN

CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN

1. Bundle Recommendation with Graph Convolutional Networks

作者:Jianxin Chang, Chen Gao, Xiangnan He, Yong Li, Depeng Jin

摘要:捆绑推荐(Bundle recommendation )旨在推荐一组商品供用户整体消费。现有的解决方案通过共享模型参数或多任务学习的方式将用户项目交互建模集成到捆绑推荐中,然而,这些方法不能显式建模项目与捆绑包(bundles)之间的隶属关系,不能探索用户选择捆绑包时的决策。在这项工作中,我们提出了一个用于捆绑推荐的图神经网络模型BGCN(Bundle Graph Convolutional Network)。BGCN将用户-项目交互、用户-捆绑包交互和捆绑包-项目从属关系统一到一个异构图中。以项目节点为桥梁,在用户节点和捆绑包节点之间进行图卷积传播,使学习到的表示能够捕捉到项目级的语义。通过基于hard-negative采样器的训练,可以进一步区分用户对相似捆绑包的细粒度偏好。在两个真实数据集上的实验结果表明,BGCN的性能有很高的提升,其性能比最新的基线高出10.77%到23.18%。

网址: https://arxiv.org/abs/2005.03475

2. Disentangled Graph Collaborative Filtering

作者:Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua

摘要:从交互数据中学习用户和项目的信息表示对于协同过滤(CF)至关重要。当前的嵌入函数利用用户-项目关系来丰富表示,从单个用户-项目实例演变为整体交互图。然而,这些方法在很大程度上以统一的方式对关系进行建模,而忽略了用户采用这些项目的意图的多样性,这可能是为了打发时间,为了兴趣,或者为其他人(如家庭)购物。这种统一的对用户兴趣建模的方法很容易导致次优表示,不能对不同的关系建模并在表示中分清用户意图。在这项工作中,我们特别关注用户意图细粒度上的用户-项目关系。因此,我们设计了一种新的模型- Disentangled图协同过滤(Disentangled Graph Collaborative Filtering ,DGCF),来理清这些因素并产生disentangled的表示。具体地说,通过在每个用户-项目交互意图上的分布建模,我们迭代地细化意图感知的交互图和表示。同时,我们鼓励不同的意图独立。这将生成disentangled的表示,有效地提取与每个意图相关的信息。我们在三个基准数据集上进行了广泛的实验,DGCF与NGCF、DisenGCN和MacridV AE这几个最先进的模型相比取得了显著的改进。进一步的分析揭示了DGCF在分解用户意图和表示的可解释性方面的优势。

网址:

http://staff.ustc.edu.cn/~hexn/

代码链接:

https://github.com/xiangwang1223/disentangled_graph_collaborative_filtering.

3. GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection

作者:Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, Lizhen Cui

摘要:近年来,推荐系统已经成为所有电子商务平台中不可缺少的功能。推荐系统的审查评级数据通常来自开放平台,这可能会吸引一群恶意用户故意插入虚假反馈,试图使推荐系统偏向于他们。此类攻击的存在可能会违反高质量数据始终可用的建模假设,而这些数据确实会影响用户的兴趣和偏好。因此,构建一个即使在攻击下也能产生稳定推荐的健壮推荐系统具有重要的现实意义。本文提出了一种基于GCN的用户表示学习框架GraphRf,该框架能够统一地进行稳健的推荐和欺诈者检测。在其端到端学习过程中,用户在欺诈者检测模块中被识别为欺诈者的概率自动确定该用户的评级数据在推荐模块中的贡献;而在推荐模块中输出的预测误差作为欺诈者检测模块中的重要特征。因此,这两个组成部分可以相互促进。经过大量的实验,实验结果表明我们的GraphRf在鲁棒评级预测和欺诈者检测这两个任务中具有优势。此外,所提出的GraphRf被验证为对现有推荐系统上的各种攻击具有更强的鲁棒性。

网址:

https://arxiv.org/abs/2005.10150

4. Hierarchical Fashion Graph Network for Personalized Outfit Recommendation

作者:Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, Tat-Seng Chua

摘要:服装推荐越来越受到网购服务商和时尚界的关注。与向用户推荐单个单品(例如,朋友或图片)的其他场景(例如,社交网络或内容共享)不同,服装推荐预测用户对一组匹配良好的时尚单品的偏好。因此,进行高质量的个性化服装推荐应满足两个要求:1)时尚单品的良好兼容性;2)与用户偏好的一致性。然而,目前的研究主要集中在其中一个需求上,只考虑了用户-全套服装(outfit)或全套服装-项目的关系,从而容易导致次优表示,限制了性能。在这项工作中,我们统一了两个任务,服装兼容性建模和个性化服装推荐。为此,我们开发了一个新的框架,层次时尚图网络(HFGN),用于同时建模用户、商品和成套服装之间的关系。特别地,我们构建了一个基于用户-全套服装交互和全套服装-项目映射的层次结构。然后,我们从最近的图神经网络中得到启发,在这种层次图上使用嵌入传播,从而将项目信息聚合到一个服装表示中,然后通过他/她的历史服装来提炼用户的表示。此外,我们还对这两个任务进行了联合训练,以优化这些表示。为了证明HFGN的有效性,我们在一个基准数据集上进行了广泛的实验,HFGN在NGNN和FHN等最先进的兼容性匹配模型基础上取得了显著的改进。

网址:

https://arxiv.org/abs/2005.12566

代码链接:

https://github.com/xcppy/hierarchical_fashion_graph_network

5. Multi-behavior Recommendation with Graph Convolutional Networks

作者:Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, Yong Li

摘要:传统的推荐模型通常只使用一种类型的用户-项目交互,面临着严重的数据稀疏或冷启动问题。利用多种类型的用户-项目交互(例如:点击和收藏)的多行为推荐可以作为一种有效的解决方案。早期的多行为推荐研究未能捕捉到行为对目标行为的不同程度的影响。它们也忽略了多行为数据中隐含的行为语义。这两个限制都使得数据不能被充分利用来提高对目标行为的推荐性能。在这项工作中,我们创新性地构造了一个统一的图来表示多行为数据,并提出了一种新的模型--多行为图卷积网络(Multi-Behavior Graph Convolutional Network,MBGCN)。MBGCN通过用户-项目传播层学习行为强度,通过项目-项目传播层捕获行为语义,较好地解决了现有工作的局限性。在两个真实数据集上的实验结果验证了该模型在挖掘多行为数据方面的有效性。我们的模型在两个数据集上的性能分别比最优基线高25.02%和6.51%。对冷启动用户的进一步研究证实了该模型的实用性。

网址:

http://staff.ustc.edu.cn/~hexn/

6. GAG: Global Atributed Graph Neural Network for Streaming Session-based Recommendation

作者:Ruihong Qiu, Hongzhi Yin, Zi Huang, Tong Chen

摘要:基于流会话的推荐(Streaming session-based recommendation,SSR)是一项具有挑战性的任务,它要求推荐器系统在流媒体场景(streaming scenario)中进行基于会话的推荐(SR)。在电子商务和社交媒体的现实应用中,在一定时间内产生的一系列用户-项目交互被分组为一个会话,这些会话以流的形式连续到达。最近的SR研究大多集中在静态集合上,即首先获取训练数据,然后使用该集合来训练基于会话的推荐器模型。他们需要对整个数据集进行几个epoch的训练,这在流式设置下是不可行的。此外,由于对用户信息的忽视或简单使用,它们很难很好地捕捉到用户的长期兴趣。虽然最近已经提出了一些流推荐策略,但它们是针对个人交互流而不是会话流而设计的。本文提出了一种求解SSR问题的带有Wasserstein 库的全局属性图(GAG)神经网络模型。一方面,当新的会话到达时,基于当前会话及其关联用户构造具有全局属性的会话图。因此,GAG可以同时考虑全局属性和当前会话,以了解会话和用户的更全面的表示,从而在推荐中产生更好的性能。另一方面,为了适应流会话场景,提出了Wasserstein库来帮助保存历史数据的代表性草图。在两个真实数据集上进行了扩展实验,验证了GAG模型与最新方法相比的优越性。

网址: https://sites.google.com/site/dbhongzhi/

成为VIP会员查看完整内容
0
132

【导读】作为世界数据挖掘领域的最高级别的学术会议,ACM SIGKDD(国际数据挖掘与知识发现大会,简称 KDD)每年都会吸引全球领域众多专业人士参与。今年的 KDD大会计划将于 2020 年 8 月 23 日 ~27 日在美国美国加利福尼亚州圣地亚哥举行。上周,KDD 2020官方发布接收论文,共有1279篇论文提交到Research Track,共216篇被接收,接收率16.8%。近期一些Paper放出来了,为此,专知小编提前为大家整理了五篇KDD 2020 图神经网络(GNN)相关论文,供大家参考。——图结构学习、多元时间序列预测、负采样、多任务多视角图表示学习、多兴趣推荐

CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、

1. Graph Structure Learning for Robust Graph Neural Networks

作者:Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, Jiliang Tang

摘要:图神经网络(GNNs)是图表示学习的有力工具。但是,最近的研究表明,GNN容易受到精心设计的扰动(称为对抗攻击)的攻击。对抗性攻击很容易欺骗GNN来预测下游任务。对于对抗攻击的脆弱性使人们越来越关注在安全关键型应用中应用GNN。因此,开发稳健的算法来防御对抗攻击具有重要意义。防御对抗攻击的一个自然想法是清理受干扰的图。很明显,真实世界的图共享一些内在属性。例如,许多现实世界的图都是低秩和稀疏的,两个相邻节点的特征往往是相似的。事实上,我们发现对抗攻击很可能会违背这些图的性质。因此,在本文中,我们利用这些特性来防御针对图的对抗攻击。特别是,我们提出了一个通用框架Pro-GNN,该框架可以从受这些特性指导的扰动图中联合学习结构图和鲁棒图神经网络模型。在真实图上的大量实验表明,即使在图受到严重干扰的情况下,我们所提出的框架也比现有的防御方法获得了显著更好的性能。我们将Pro-GNN的实现发布到我们的DeepRobust存储库,以进行对抗性攻击和防御。

网址: https://arxiv.org/pdf/2005.10203.pdf

代码链接: https://github.com/ChandlerBang/Pro-GNN

2. Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks

作者:Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang

摘要:多变量时间序列的建模长期以来一直吸引着来自经济、金融和交通等不同领域的研究人员的关注。多变量时间序列预测背后的一个基本假设是其变量之间相互依赖,但现有方法未能充分利用变量对之间的潜在空间相关性。同时,近些年来,图神经网络(GNNs)在处理关系依赖方面表现出了很高的能力。GNN需要定义良好的图结构来进行信息传播,这意味着它们不能直接应用于事先不知道依赖关系的多变量时间序列。本文提出了一种专门针对多变量时间序列数据设计的通用图神经网络框架。该方法通过图学习模块自动提取变量间的单向关系,可以方便地集成变量属性等外部知识。在此基础上,提出了一种新的max-hop传播层和一个dilated inception层来捕捉时间序列中的时间和空间依赖关系。图学习、图卷积和时间卷积模块在端到端框架中联合学习。实验结果表明,我们提出的模型在4个基准数据集中的3个数据上优于最新的基线方法,并且在提供额外结构信息的两个交通数据集上,与其他方法具有同等的性能。

网址: https://shiruipan.github.io/publication/kdd-2020-wu/kdd-2020-wu.pdf

3. Understanding Negative Sampling in Graph Representation Learning

作者:Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, Jie Tang

摘要:在最近的几年中,对图表示学习进行了广泛的研究。尽管它有可能为各种网络生成连续的嵌入,但是在大型节点集中得到有效高质量的表示仍然具有挑战性。采样是实现该性能目标的关键点。现有技术通常侧重于正向节点对的采样,而对负向采样的策略探索不够。为了弥补这一差距,我们从目标和风险两个角度系统地分析了负采样的作用,从理论上论证了负采样在确定优化目标和结果方差方面与正采样同等重要。据我们所知,我们是第一个推导该理论并量化负采样分布应与其正采样分布成正相关但亚线性相关的方法。在该理论的指导下,我们提出了MCNS,用自对比度近似法近似正分布,并通过Metropolis-Hastings加速负采样。我们在5个数据集上评估了我们的方法,这些数据集涵盖了19个实验设置,涵盖了广泛的下游图学习任务,包括链接预测,节点分类和个性化推荐。这些相对全面的实验结果证明了其稳健性和优越性。

网址: https://arxiv.org/pdf/2005.09863.pdf

4. M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems

作者:Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, Xiao-ming Wu

摘要:将图表示学习与多视图数据(边信息)相结合进行推荐是工业上的一种趋势。现有的大多数方法可以归类为多视图表示融合,它们首先构建一个图,然后将多视图数据集成到图中每个节点的单个紧凑表示中。这些方法在工程和算法方面都引起了人们的关注:1)多视图数据在工业中是丰富而且有用的,并且可能超过单个矢量的容量;2)由于多视图数据往往来自不同的分布,可能会引入归纳偏置(inductive bias)。在本文中,我们使用一种多视图表示对齐方法来解决这个问题。特别地,我们提出了一个多任务多视角图表示学习框架(M2GRL)来学习web级推荐系统中的多视角图节点表示。M2GRL为每个单视图数据构造一个图,从多个图中学习多个单独的表示,并执行对齐以建立模型的交叉视图关系。M2GRL选择了一种多任务学习范式来联合学习视图内表示和交叉视图关系。此外,M2GRL在训练过程中利用同方差不确定性自适应地调整任务的损失权重。我们在淘宝部署了M2GRL,并对570亿个实例进行了训练。根据离线指标和在线A/B测试,M2GRL的性能明显优于其他最先进的算法。对淘宝多样性推荐的进一步研究表明,利用M2GRL产生的多种表征是有效的,对于不同侧重点的各种工业推荐任务来说,M2GRL是一个很有前途的方向。

网址:

https://arxiv.org/pdf/2005.10110.pdf

5. Controllable Multi-Interest Framework for Recommendation

作者:Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang

摘要:近年来,由于深度学习的快速发展,神经网络在电子商务推荐系统中得到了广泛的应用。我们将推荐系统形式化为一个序列推荐问题,目的是预测可能与用户交互的下一个项目。最近的研究通常从用户的行为序列中给出一个整体的嵌入。然而,统一的用户嵌入不能反映用户在一段时间内的多个兴趣。本文提出了一种新颖的可控多兴趣序列推荐框架,称为ComiRec。我们的多兴趣模块从用户行为序列中捕获多个兴趣,可用于从大规模项目集中检索候选项目。然后将这些项目送入聚合模块以获得总体推荐。聚合模块利用一个可控因素来平衡推荐的准确性和多样性。我们在两个真实的数据集Amazon和Taobao进行序列推荐实验。实验结果表明,我们的框架相对于最新模型取得了重大改进。我们的框架也已成功部署在离线阿里巴巴分布式云平台上。

网址: https://arxiv.org/pdf/2005.09347.pdf

代码链接: https://github.com/cenyk1230/ComiRec

成为VIP会员查看完整内容
0
79

【导读】计算语言学协会(the Association for Computational Linguistics, ACL)年度会议作为顶级的国际会议,在计算语言学和自然语言处理领域一直备受关注。其接收的论文覆盖了语义分析、文本挖掘、信息抽取、问答系统、机器翻译、情感分析和意见挖掘等众多自然语言处理领域的研究方向。今年,第58届计算语言学协会(the Association for Computational Linguistics, ACL)年度会议将于2020年7月5日至10日在美国华盛顿西雅图举行。受COVID-19疫情影响,ACL 2020将全部改为线上举行。为此,专知小编提前为大家整理了ACL 2020图神经网络(GNN)相关论文,让大家先睹为快——事实验证、法律文书、谣言检测、自动摘要、情感分析。

WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN

1. Fine-grained Fact Verification with Kernel Graph Attention Network

作者:Zhenghao Liu, Chenyan Xiong, Maosong Sun, Zhiyuan Liu

摘要:事实验证(Fact V erification)需要细粒度的自然语言推理能力来找到微妙的线索去识别句法和语义上正确但没有强有力支持的声明(well-supported claims)。本文提出了基于核方法的图注意力网络(KGAT),该网络使用基于核的注意力进行更细粒度的事实验证。给定一个声明和一组形成证据图潜在证据的句子,KGAT在图注意力网络中引入了可以更好地衡量证据节点重要性的节点核,以及可以在图中进行细粒度证据传播的边缘核,以实现更准确的事实验证。KGAT达到了70.38%的FEVER得分,在FEVER上大大超过了现有的事实验证模型(FEVER是事实验证的大规模基准)。我们的分析表明,与点积注意力相比,基于核的注意力更多地集中在证据图中的相关证据句子和有意义的线索上,这是KGAT有效性的主要来源。

网址:https://arxiv.org/pdf/1910.09796.pdf

2. Distinguish Confusing Law Articles for Legal Judgment Prediction

作者:Nuo Xu, Pinghui Wang, Long Chen, Li Pan, Xiaoyan Wang, Junzhou Zhao

摘要:法律审判预测(LJP)是在给出案件事实描述文本的情况下,自动预测案件判决结果的任务,其在司法协助系统中具有良好的应用前景,为公众提供方便的服务。实际上,由于适用于类似法律条款的法律案件很容易被误判,经常会产生混淆的指控。在本文中,我们提出了一个端到端的模型--LADAN来解决LJP的任务。为了解决这一问题,现有的方法严重依赖领域专家,这阻碍了它在不同法律制度中的应用。为了区分混淆的指控,我们提出了一种新的图神经网络来自动学习混淆法律文章之间的细微差别,并设计了一种新的注意力机制,该机制充分利用学习到的差别从事实描述中提取令人信服的鉴别特征。在真实数据集上进行的实验证明了我们的LADAN算法的优越性。

网址:

https://arxiv.org/pdf/2004.02557.pdf

3. GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media

作者:Yi-Ju Lu, Cheng-Te Li

摘要:本文解决了在更现实的社交媒体场景下的假新闻检测问题。给定源短文本推文和相应的没有文本评论的转发用户序列,我们的目的是预测源推文是否是假的,并通过突出可疑转发者的证据和他们关注的词语来产生解释。为了实现这一目标,我们提出了一种新的基于神经网络的模型--图感知协同注意网络(GCAN)。在真实推文数据集上进行的广泛实验表明,GCAN的平均准确率比最先进的方法高出16%。此外,案例研究还表明,GCAN可以给出合理的解释。

网址:

https://arxiv.org/pdf/2004.11648.pdf

4. Heterogeneous Graph Neural Networks for Extractive Document Summarization

作者:Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, Xuanjing Huang

摘要:作为提取文档摘要的关键步骤,跨句关系学习已经有了大量的研究方法。一种直观的方法是将它们放入基于图的神经网络中,该网络具有更复杂的结构来捕获句间关系。本文提出了一种基于图的异构神经网络抽取摘要算法(HeterSUMGraph),该算法除句子外,还包含不同粒度的语义节点。这些额外的结点起到句子之间的中介作用,丰富了句子之间的关系。此外,通过引入文档节点,我们的图结构可以灵活地从单文档设置自然扩展到多文档设置。据我们所知,我们是第一个将不同类型的节点引入到基于图的神经网络中进行提取文档摘要的,我们还进行了全面的定性分析,以考察它们的好处。

网址:

https://arxiv.org/pdf/2004.12393.pdf

代码链接:

https://github.com/brxx122/HeterSUMGraph

5. Relational Graph Attention Network for Aspect-based Sentiment Analysis

作者:Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan, Rui Wang

摘要:Aspect级的情感分析旨在确定在线评论中对某一特定方面的情感极性。最近的大多数努力采用了基于注意力的神经网络模型来隐式地将aspect与观点词联系起来。然而,由于语言的复杂性和单句中多个aspect的存在,这些模型往往混淆了它们之间的联系。在本文中,我们通过对语法信息进行有效的编码来解决这个问题。首先,我们通过重塑和修剪常规依赖关系树,定义了一个以目标方面为根的统一的面向aspect的依赖树结构。然后,我们提出了一种关系图注意力网络(R-GAT)来编码新的树结构用于情感预测。我们在SemEval 2014和Twitter数据集上进行了广泛的实验,实验结果证实,该方法可以更好地建立aspect和观点词之间的联系,从而显著提高了图注意网络(GAT)的性能。

网址:

https://arxiv.org/pdf/2004.12362.pdf

成为VIP会员查看完整内容
0
70

【导读】CIKM 2019 (International Conference on Information and Knowledge Management),今年会议主题是 "AI for Future Life"。CIKM是数据库、数据挖掘与内容检索领域的旗舰会议。CIKM 2019共计收到1030篇长文有效投稿,其中200篇论文被大会录用,总录用率约19.4%。图神经网络(GNN)相关的论文依然很火爆,小编在官网上查看了,CIKM专门有专题,大约10篇长文接受为GNN专题论文。为此,专知小编提前为大家筛选了六篇GNN 长文论文供参考和学习!

  1. Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction

作者:Zekun Li,Zeyu Cui,Shu Wu,Xiaoyu Zhang,Liang Wang;

摘要:点击率(CTR)预测是在线广告和推荐系统等网络应用中的一项重要任务,其特点是多领域的。该任务的关键是对不同特征field之间的特征交互进行建模。最近提出的基于深度学习的模型遵循了一种通用的范式:首先将原始的稀疏输入multi-filed特征映射到密集的field嵌入向量中,然后简单地将其连接到深度神经网络(DNN)或其他专门设计的网络中,以学习高阶特征交互。然而,特征field的简单非结构化组合将不可避免地限制以足够灵活和显式的方式建模不同field之间复杂交互的能力。 在这项工作中,我们提出在一个图结构中直观地表示multi-field的特征,其中每个节点对应一个特征field,不同的field可以通过边进行交互。因此,建模特征交互的任务可以转换为对相应图上的节点交互进行建模。为此,我们设计了一个新的模型-Feature Interaction Graph Neural Networks (Fi-GNN)。利用图的强表征性,我们的模型不仅可以灵活、明确地对复杂的特征交互进行建模,而且可以为CTR预测提供良好的模型解释。在两个真实数据集上的实验结果显示了它的优越性。

网址: https://www.zhuanzhi.ai/paper/4d6897c6a057a33539d3e6758c223a9c

2、Graph Convolutional Networks with Motif-based Attention

作者:John Boaz Lee,Ryan A. Rossi,Xiangnan Kong,Sungchul Kim,Eunyee Koh,Anup Rao;

摘要:深度卷积神经网络在计算机视觉和语音识别领域的成功,使得研究人员开始研究该体系结构对图结构数据的泛化。最近提出的一种称为图卷积网络的方法能够在节点分类方面取得最新的成果。然而,由于所提出的方法依赖于spectral图卷积的局部一阶近似,因此无法捕获图中节点间的高阶相互作用。在这项工作中,我们提出了一个motif-based的图注意力模型,称为Motif Convolutional Networks,它通过使用加权多跳motif邻接矩阵来捕获高阶邻域,从而泛华了过去的方法。一个新的注意力机制被用来允许每个单独的节点选择最相关的邻居来应用它的过滤器。我们在不同领域(社会网络和生物信息学)的图上评估了我们的方法,结果表明它能够在半监督节点分类任务上胜过一组有竞争力的基准方法。其他结果证明了attention的有用性,表明不同的节点对不同的高阶邻域进行了优先排序。

网址: https://www.zhuanzhi.ai/paper/ecff4bfc2cc3a0a44307556c0cee2443

  1. Gravity-Inspired Graph Autoencoders for Directed Link Prediction

作者:Guillaume Salha,Stratis Limnios,Romain Hennequin,Viet Anh Tran,Michalis Vazirgian;

摘要:图自编码器(AE)和变分自编码器(VAE)是近年来出现的强有力的节点嵌入方法。特别是利用图AE和VAE成功地解决了具有挑战性的链路预测问题,目的是找出图上的一些节点对是否被未观察到的边所连接。然而,这些模型侧重于无向图,因此忽略了链接的潜在方向,这限制了许多实际应用程序。在本文中,我们扩展了graph AE和VAE框架来解决有向图中的链路预测问题。我们提出了一种新的gravity-inspired的解码器方案,可以有效地从节点嵌入中重建有向图。我们对标准graph AE和VAE表现较差的三种不同定向链路预测任务进行了实证评价。我们在三个真实世界的图上获得了具有竞争力的结果,超过了几个流行的baseline。

网址: https://www.zhuanzhi.ai/paper/7ac17bf2659eff0cfb0458ded56dcbb4

4、Hashing Graph Convolution for Node Classification

作者:Wenting Zhao, Zhen Cui, Chunyan Xu, Chengzheng Li, Tong Zhang,Jian Yang;

摘要:图数据卷积在non-gridded数据中的应用引起了人们的极大兴趣。为了克服相邻节点的排序和数量的影响,在以往的研究中,往往对局部接受域进行summing/average diffusion/aggregation。然而,这种压缩成一个节点的方法容易造成节点间的signal entanglement,导致次优特征信息,降低了节点的可分辨性。针对这一问题,本文提出了一种简单而有效的哈希图卷积(HGC)方法,该方法通过在节点聚合中使用全局哈希和局部投影来进行节点分类。与传统的完全collision聚合相比,hash-projection可以大大降低相邻节点聚合时的collision概率。我们认为基于hash-projection的方法可以更好地保持甚至增加局部区域的原始差异,并得到进一步的改进。hash-projection的另一个附带效果是将每个节点的接受域归一化为一个共同大小的bucket空间,不仅避免了大小不同的邻居节点及其顺序的麻烦,而且使图卷积运行起来就像标准的shape-girded卷积一样。考虑到训练样本较小,我们在HGC中引入预测一致性正则化项来约束图中未标记节点的得分一致性。HGC在transductive和inductive实验环境下进行评估。在节点分类任务上的大量实验表明,hash-projection确实可以提高性能,我们的HGC在所有实验数据集上都取得了最新最好的结果。

网址: https://easychair.org/publications/preprint/lhT3

5、Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach

作者:Changjun Fan,Li Zeng,Yuhui Ding,Muhao Chen,Yizhou Sun,Zhong Liu;

摘要: Betweenness centrality (BC)是网络分析中广泛使用的一种中心性度量,它试图通过最短路径的比例来描述网络中节点的重要性。它是许多有价值的应用的关键,包括社区检测和网络拆除。由于时间复杂度高,在大型网络上计算BC分数在计算上具有挑战性。许多基于采样的近似算法被提出以加速BC的估计。然而,这些方法在大规模网络上仍然需要相当长的运行时间,并且它们的结果对网络的微小扰动都很敏感。 在这篇论文中,我们主要研究如何有效识别图中BC最高的top k节点,这是许多网络应用程序所必须完成的任务。与以往的启发式方法不同,我们将该问题转化为一个学习问题,并设计了一个基于encoder-decoder的框架作为解决方案。具体来说,encoder利用网络结构将每个节点表示为一个嵌入向量,该嵌入向量捕获节点的重要结构信息。decoder将每个嵌入向量转换成一个标量,该标量根据节点的BC来标识节点的相对rank。我们使用pairwise ranking损失来训练模型,以识别节点的BC顺序。通过对小规模网络的训练,该模型能够为较大网络的节点分配相对BC分数,从而识别出高排名的节点。在合成网络和真实世界网络上的实验表明,与现有的baseline相比,我们的模型在没有显著牺牲准确性的情况下大大加快了预测速度,甚至在几个大型真实世界网络的准确性方面超过了最先进的水平。

网址: https://www.zhuanzhi.ai/paper/7bde1414600ac4f4c33493994e3f80fc

6、Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation

作者:Fengli Xu,Jianxun Lian,Zhenyu Han,Yong Li,Yujian Xu,Xing Xie;

摘要:近年来,agent-initiated社交电子商务模式取得了巨大的成功,这种模式鼓励用户成为销售代理商,通过他们的社交关系来推广商品。这种类型的社交电子商务中的复杂交互可以表述为异构信息网络(HIN),其中三种节点之间的关系有多种类型,分别为用户、销售代理和商品。学习高质量的节点嵌入是研究的重点,图卷积网络(GCNs)是近年来发展起来的最先进的表示学习方法。然而,现有的GCN模型在建模异构关系和有效地从大量邻域中采样相关接收域方面都存在基本的局限性。为了解决这些问题,我们提出了RecoGCN(a RElation-aware CO-attentive GCN model)来有效地聚合HIN中的异构特征。它弥补了目前GCN在使用关系感知聚合器建模异构关系方面的局限性,并利用语义感知元路径为每个节点开辟简洁和相关的接受域。为了有效地融合从不同元路径中学习到的嵌入,我们进一步提出了一种co-attentive机制,通过关注用户、销售代理和商品之间的三种交互来动态地为不同的元路径分配重要性权重。在真实数据集上的大量实验表明,RecoGCN能够学习HIN中有意义的节点嵌入,并且在推荐任务中始终优于baseline方法。

网址: https://www.zhuanzhi.ai/vip/4e1f4ba54086e64b3cb8e47b0c7f9ca3

成为VIP会员查看完整内容
0
31
小贴士
相关论文
Heterogeneous Graph Transformer
Ziniu Hu,Yuxiao Dong,Kuansan Wang,Yizhou Sun
21+阅读 · 2020年3月3日
Memory Augmented Graph Neural Networks for Sequential Recommendation
Chen Ma,Liheng Ma,Yingxue Zhang,Jianing Sun,Xue Liu,Mark Coates
12+阅读 · 2019年12月26日
Hyper-SAGNN: a self-attention based graph neural network for hypergraphs
Ruochi Zhang,Yuesong Zou,Jian Ma
12+阅读 · 2019年11月6日
Zekun Li,Zeyu Cui,Shu Wu,Xiaoyu Zhang,Liang Wang
6+阅读 · 2019年10月12日
Signed Graph Attention Networks
Junjie Huang,Huawei Shen,Liang Hou,Xueqi Cheng
6+阅读 · 2019年9月5日
MR-GNN: Multi-Resolution and Dual Graph Neural Network for Predicting Structured Entity Interactions
Nuo Xu,Pinghui Wang,Long Chen,Jing Tao,Junzhou Zhao
6+阅读 · 2019年5月23日
Xiang Wang,Xiangnan He,Yixin Cao,Meng Liu,Tat-Seng Chua
36+阅读 · 2019年5月20日
Hao Peng,Jianxin Li,Qiran Gong,Senzhang Wang,Yuanxing Ning,Philip S. Yu
5+阅读 · 2019年2月25日
Muhan Zhang,Yixin Chen
23+阅读 · 2018年2月27日
Ruoyu Li,Sheng Wang,Feiyun Zhu,Junzhou Huang
5+阅读 · 2018年1月10日
Top