【导读】CIKM 2019 (International Conference on Information and Knowledge Management),今年会议主题是 "AI for Future Life"。CIKM是数据库、数据挖掘与内容检索领域的旗舰会议。CIKM 2019共计收到1030篇长文有效投稿,其中200篇论文被大会录用,总录用率约19.4%。图神经网络(GNN)相关的论文依然很火爆,小编在官网上查看了,CIKM专门有专题,大约10篇长文接受为GNN专题论文。为此,专知小编提前为大家筛选了六篇GNN 长文论文供参考和学习!

  1. Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction

作者:Zekun Li,Zeyu Cui,Shu Wu,Xiaoyu Zhang,Liang Wang;

摘要:点击率(CTR)预测是在线广告和推荐系统等网络应用中的一项重要任务,其特点是多领域的。该任务的关键是对不同特征field之间的特征交互进行建模。最近提出的基于深度学习的模型遵循了一种通用的范式:首先将原始的稀疏输入multi-filed特征映射到密集的field嵌入向量中,然后简单地将其连接到深度神经网络(DNN)或其他专门设计的网络中,以学习高阶特征交互。然而,特征field的简单非结构化组合将不可避免地限制以足够灵活和显式的方式建模不同field之间复杂交互的能力。 在这项工作中,我们提出在一个图结构中直观地表示multi-field的特征,其中每个节点对应一个特征field,不同的field可以通过边进行交互。因此,建模特征交互的任务可以转换为对相应图上的节点交互进行建模。为此,我们设计了一个新的模型-Feature Interaction Graph Neural Networks (Fi-GNN)。利用图的强表征性,我们的模型不仅可以灵活、明确地对复杂的特征交互进行建模,而且可以为CTR预测提供良好的模型解释。在两个真实数据集上的实验结果显示了它的优越性。

网址: https://www.zhuanzhi.ai/paper/4d6897c6a057a33539d3e6758c223a9c

2、Graph Convolutional Networks with Motif-based Attention

作者:John Boaz Lee,Ryan A. Rossi,Xiangnan Kong,Sungchul Kim,Eunyee Koh,Anup Rao;

摘要:深度卷积神经网络在计算机视觉和语音识别领域的成功,使得研究人员开始研究该体系结构对图结构数据的泛化。最近提出的一种称为图卷积网络的方法能够在节点分类方面取得最新的成果。然而,由于所提出的方法依赖于spectral图卷积的局部一阶近似,因此无法捕获图中节点间的高阶相互作用。在这项工作中,我们提出了一个motif-based的图注意力模型,称为Motif Convolutional Networks,它通过使用加权多跳motif邻接矩阵来捕获高阶邻域,从而泛华了过去的方法。一个新的注意力机制被用来允许每个单独的节点选择最相关的邻居来应用它的过滤器。我们在不同领域(社会网络和生物信息学)的图上评估了我们的方法,结果表明它能够在半监督节点分类任务上胜过一组有竞争力的基准方法。其他结果证明了attention的有用性,表明不同的节点对不同的高阶邻域进行了优先排序。

网址: https://www.zhuanzhi.ai/paper/ecff4bfc2cc3a0a44307556c0cee2443

  1. Gravity-Inspired Graph Autoencoders for Directed Link Prediction

作者:Guillaume Salha,Stratis Limnios,Romain Hennequin,Viet Anh Tran,Michalis Vazirgian;

摘要:图自编码器(AE)和变分自编码器(VAE)是近年来出现的强有力的节点嵌入方法。特别是利用图AE和VAE成功地解决了具有挑战性的链路预测问题,目的是找出图上的一些节点对是否被未观察到的边所连接。然而,这些模型侧重于无向图,因此忽略了链接的潜在方向,这限制了许多实际应用程序。在本文中,我们扩展了graph AE和VAE框架来解决有向图中的链路预测问题。我们提出了一种新的gravity-inspired的解码器方案,可以有效地从节点嵌入中重建有向图。我们对标准graph AE和VAE表现较差的三种不同定向链路预测任务进行了实证评价。我们在三个真实世界的图上获得了具有竞争力的结果,超过了几个流行的baseline。

网址: https://www.zhuanzhi.ai/paper/7ac17bf2659eff0cfb0458ded56dcbb4

4、Hashing Graph Convolution for Node Classification

作者:Wenting Zhao, Zhen Cui, Chunyan Xu, Chengzheng Li, Tong Zhang,Jian Yang;

摘要:图数据卷积在non-gridded数据中的应用引起了人们的极大兴趣。为了克服相邻节点的排序和数量的影响,在以往的研究中,往往对局部接受域进行summing/average diffusion/aggregation。然而,这种压缩成一个节点的方法容易造成节点间的signal entanglement,导致次优特征信息,降低了节点的可分辨性。针对这一问题,本文提出了一种简单而有效的哈希图卷积(HGC)方法,该方法通过在节点聚合中使用全局哈希和局部投影来进行节点分类。与传统的完全collision聚合相比,hash-projection可以大大降低相邻节点聚合时的collision概率。我们认为基于hash-projection的方法可以更好地保持甚至增加局部区域的原始差异,并得到进一步的改进。hash-projection的另一个附带效果是将每个节点的接受域归一化为一个共同大小的bucket空间,不仅避免了大小不同的邻居节点及其顺序的麻烦,而且使图卷积运行起来就像标准的shape-girded卷积一样。考虑到训练样本较小,我们在HGC中引入预测一致性正则化项来约束图中未标记节点的得分一致性。HGC在transductive和inductive实验环境下进行评估。在节点分类任务上的大量实验表明,hash-projection确实可以提高性能,我们的HGC在所有实验数据集上都取得了最新最好的结果。

网址: https://easychair.org/publications/preprint/lhT3

5、Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach

作者:Changjun Fan,Li Zeng,Yuhui Ding,Muhao Chen,Yizhou Sun,Zhong Liu;

摘要: Betweenness centrality (BC)是网络分析中广泛使用的一种中心性度量,它试图通过最短路径的比例来描述网络中节点的重要性。它是许多有价值的应用的关键,包括社区检测和网络拆除。由于时间复杂度高,在大型网络上计算BC分数在计算上具有挑战性。许多基于采样的近似算法被提出以加速BC的估计。然而,这些方法在大规模网络上仍然需要相当长的运行时间,并且它们的结果对网络的微小扰动都很敏感。 在这篇论文中,我们主要研究如何有效识别图中BC最高的top k节点,这是许多网络应用程序所必须完成的任务。与以往的启发式方法不同,我们将该问题转化为一个学习问题,并设计了一个基于encoder-decoder的框架作为解决方案。具体来说,encoder利用网络结构将每个节点表示为一个嵌入向量,该嵌入向量捕获节点的重要结构信息。decoder将每个嵌入向量转换成一个标量,该标量根据节点的BC来标识节点的相对rank。我们使用pairwise ranking损失来训练模型,以识别节点的BC顺序。通过对小规模网络的训练,该模型能够为较大网络的节点分配相对BC分数,从而识别出高排名的节点。在合成网络和真实世界网络上的实验表明,与现有的baseline相比,我们的模型在没有显著牺牲准确性的情况下大大加快了预测速度,甚至在几个大型真实世界网络的准确性方面超过了最先进的水平。

网址: https://www.zhuanzhi.ai/paper/7bde1414600ac4f4c33493994e3f80fc

6、Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation

作者:Fengli Xu,Jianxun Lian,Zhenyu Han,Yong Li,Yujian Xu,Xing Xie;

摘要:近年来,agent-initiated社交电子商务模式取得了巨大的成功,这种模式鼓励用户成为销售代理商,通过他们的社交关系来推广商品。这种类型的社交电子商务中的复杂交互可以表述为异构信息网络(HIN),其中三种节点之间的关系有多种类型,分别为用户、销售代理和商品。学习高质量的节点嵌入是研究的重点,图卷积网络(GCNs)是近年来发展起来的最先进的表示学习方法。然而,现有的GCN模型在建模异构关系和有效地从大量邻域中采样相关接收域方面都存在基本的局限性。为了解决这些问题,我们提出了RecoGCN(a RElation-aware CO-attentive GCN model)来有效地聚合HIN中的异构特征。它弥补了目前GCN在使用关系感知聚合器建模异构关系方面的局限性,并利用语义感知元路径为每个节点开辟简洁和相关的接受域。为了有效地融合从不同元路径中学习到的嵌入,我们进一步提出了一种co-attentive机制,通过关注用户、销售代理和商品之间的三种交互来动态地为不同的元路径分配重要性权重。在真实数据集上的大量实验表明,RecoGCN能够学习HIN中有意义的节点嵌入,并且在推荐任务中始终优于baseline方法。

网址: https://www.zhuanzhi.ai/vip/4e1f4ba54086e64b3cb8e47b0c7f9ca3

成为VIP会员查看完整内容
0
21

相关内容

信息和知识管理会议(CIKM)为介绍和讨论信息和知识管理的研究以及数据和知识库方面的最新进展提供了一个国际论坛。会议的目的是确定未来知识和信息系统发展所面临的具有挑战性的问题,并通过征求和审查高质量的、应用的和理论的研究成果来确定未来的研究方向。会议的一个重要部分是讲习班计划,它侧重于及时的研究挑战和倡议。 官网地址:http://dblp.uni-trier.de/db/conf/cikm/

【导读】ICML(International Conference on Machine Learning),即国际机器学习大会, 是机器学习领域全球最具影响力的学术会议之一,因此在该会议上发表论文的研究者也会备受关注。因疫情的影响, 今年第37届ICML大会将于2020年7月13日至18日在线上举行。据官方统计,ICML 2020共提交4990篇论文,接收论文1088篇,接收率为21.8%。与往年相比,接收率逐年走低。在会议开始前夕,专知小编为大家整理了ICML 2020图神经网络(GNN)的六篇相关论文供参考——核GNN、特征变换、Haar 图池化、无监督图表示、谱聚类、自监督GCN。

ICML 2020 Accepted Papers https://icml.cc/Conferences/2020/AcceptedPapersInitial

ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN

1. Convolutional Kernel Networks for Graph-Structured Data

作者:Dexiong Chen, Laurent Jacob, Julien Mairal

摘要:我们引入了一系列多层图核,并在图卷积神经网络和核方法之间建立了新的联系。我们的方法通过将图表示为核特征映射序列将卷积核网络推广到图结构数据,其中每个节点携带关于局部图子结构的信息。一方面,核的观点提供了一种无监督的、有表现力的、易于正规化的数据表示,这在样本有限的情况下很有用。另一方面,我们的模型也可以在大规模数据上进行端到端的训练,从而产生了新型的图卷积神经网络。我们的方法在几个图分类基准上取得了与之相当的性能,同时提供了简单的模型解释。

网址: https://arxiv.org/abs/2003.05189

代码链接: https://github.com/claying/GCKN

2. GNN-FILM: Graph Neural Networks with Feature-Wise Linear Modulation 作者:Marc Brockschmidt

摘要:本文提出了一种新的基于特征线性调制(feature-wise linear modulation,FiLM)的图神经网络(GNN)。许多标准GNN变体仅通过每条边的源的表示来计算“信息”,从而沿着图的边传播信息。在GNN-FILE中,边的目标节点的表示被附加地用于计算可以应用于所有传入信息的变换,从而允许对传递的信息进行基于特征的调制。基于基线方法的重新实现,本文给出了在文献中提到的三个任务上的不同GNN体系结构的实验结果。所有方法的超参数都是通过广泛的搜索找到的,产生了一些令人惊讶的结果:基线模型之间的差异比文献报道的要小。尽管如此,GNN-FILE在分子图的回归任务上的表现优于基线方法,在其他任务上的表现也具有竞争性。

网址: https://arxiv.org/abs/1906.12192

3. Haar Graph Pooling

作者:Yu Guang Wang, Ming Li, Zheng Ma, Guido Montufar, Xiaosheng Zhuang, Yanan Fan

摘要:深度图神经网络(GNNs)是用于图分类和基于图的回归任务的有效模型。在这些任务中,图池化是GNN适应不同大小和结构的输入图的关键因素。本文提出了一种新的基于压缩Haar变换的图池化操作-HaarPooling。HaarPooling实现了一系列池化操作;它是通过跟随输入图的一系列聚类序列来计算的。HaarPooling层将给定的输入图变换为节点数较小、特征维数相同的输出图;压缩Haar变换在Haar小波域中过滤出细节信息。通过这种方式,所有HaarPooling层一起将任何给定输入图的特征合成为大小一致的特征向量。这种变换提供了数据的稀疏表征,并保留了输入图的结构信息。使用标准图卷积层和HaarPooling层实现的GNN在各种图分类和回归问题上实现了最先进的性能。

网址: https://arxiv.org/abs/1909.11580

4. Interferometric Graph Transform: a Deep Unsupervised Graph Representation 作者:Edouard Oyallon

摘要:我们提出了Interferometric Graph Transform(IGT),这是一类用于构建图表示的新型深度无监督图卷积神经网络。我们的第一个贡献是提出了一种从欧几里德傅立叶变换的推广得到的通用复数谱图结构。基于一个新颖的贪婪凹目标,我们的学习表示既包括可区分的特征,也包括不变的特征。通过实验可以得到,我们的学习过程利用了谱域的拓扑,这通常是谱方法的一个缺陷,特别是我们的方法可以恢复视觉任务的解析算子。我们在各种具有挑战性的任务上测试了我们的算法,例如图像分类(MNIST,CIFAR-10)、社区检测(Authorship,Facebook graph)和3D骨架视频中的动作识别(SBU,NTU),在谱图非监督环境下展示了一种新的技术水平。

网址:

https://arxiv.org/abs/2006.05722

5. Spectral Clustering with Graph Neural Networks for Graph Pooling

作者:Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi

摘要:谱聚类(SC)是发现图上强连通社区的一种流行的聚类技术。SC可以在图神经网络(GNN)中使用,以实现聚合属于同一簇的节点的池化操作。然而,Laplacian的特征分解代价很高,而且由于聚类结果是特定于图的,因此基于SC的池化方法必须对每个新样本执行新的优化。在本文中,我们提出了一种图聚类方法来解决SC的这些局限性。我们建立了归一化minCUT问题的连续松弛公式,并训练GNN来计算最小化这一目标的簇分配。我们的基于GNN的实现是可微的,不需要计算谱分解,并且学习了一个聚类函数,可以在样本外的图上快速评估。从提出的聚类方法出发,我们设计了一个图池化算子,它克服了现有图池化技术的一些重要局限性,并在多个监督和非监督任务中取得了最好的性能。

网址: https://arxiv.org/abs/1907.00481

6. When Does Self-Supervision Help Graph Convolutional Networks?

作者:Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

摘要:自监督作为一种新兴的技术已被用于训练卷积神经网络(CNNs),以提高图像表示学习的可传递性、泛化能力和鲁棒性。然而,自监督对操作图形数据的图卷积网络(GCNS)的介绍却很少被探索。在这项研究中,我们首次将自监督纳入GCNS的系统探索和评估。我们首先阐述了将自监督纳入GCNS的三种机制,分析了预训练&精调和自训练的局限性,并进而将重点放在多任务学习上。此外,我们还提出了三种新的GCNS自监督学习任务,并进行了理论分析和数值比较。最后,我们进一步将多任务自监督融入到图对抗性训练中。研究结果表明,通过合理设计任务形式和合并机制,自监督有利于GCNS获得更强的泛化能力和鲁棒性。

网址: https://arxiv.org/abs/2006.09136

代码链接: https://github.com/Shen-Lab/SS-GCNs

成为VIP会员查看完整内容
0
34

【导读】计算语言学协会(the Association for Computational Linguistics, ACL)年度会议作为顶级的国际会议,在计算语言学和自然语言处理领域一直备受关注。其接收的论文覆盖了语义分析、文本挖掘、信息抽取、问答系统、机器翻译、情感分析和意见挖掘等众多自然语言处理领域的研究方向。今年,第58届计算语言学协会(the Association for Computational Linguistics, ACL)年度会议将于2020年7月5日至10日在美国华盛顿西雅图举行。受COVID-19疫情影响,ACL 2020将全部改为线上举行。本次ACL大会共提交了3429篇论文,共有571篇长论文、以及208篇短论文入选。不久之前,专知小编为大家整理了大会的图神经网络(GNN)相关论文,这期小编继续为大家奉上ACL 2020图神经网络(GNN)相关论文-Part 2供参考——多文档摘要、多粒度机器阅读理解、帖子争议检测、GAE。

ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN

1. Leveraging Graph to Improve Abstractive Multi-Document Summarization

作者:Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, Junping Du

摘要:捕捉文本单元之间关系图对于从多个文档中检测显著信息和生成整体连贯的摘要有很大好处。本文提出了一种神经抽取多文档摘要(MDS)模型,该模型可以利用文档的常见图表示,如相似度图和话语图(discourse graph),来更有效地处理多个输入文档并生成摘要。我们的模型使用图对文档进行编码,以捕获跨文档关系,这对于总结长文档至关重要。我们的模型还可以利用图来指导摘要的生成过程,这有利于生成连贯而简洁的摘要。此外,预训练的语言模型可以很容易地与我们的模型相结合,进一步提高了摘要的性能。在WikiSum和MultiNews数据集上的实验结果表明,所提出的体系结构在几个强大的基线上带来了实质性的改进。

网址: https://arxiv.org/abs/2005.10043

2. Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension

作者:Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan, Wanxiang Che, Daxin Jiang, Ming Zhou, Ting Liu

摘要:“自然问题”是一种具有挑战性的新的机器阅读理解基准,其中包含两个答案:长答案(通常是一个段落)和短答案(长答案中的一个或多个实体)。尽管此基准测试的现有方法很有效,但它们在训练期间单独处理这两个子任务,忽略了它们间的依赖关系。为了解决这个问题,我们提出了一种新颖的多粒度机器阅读理解框架,该框架专注于对文档的分层性质进行建模,这些文档具有不同的粒度级别:文档、段落、句子和词。我们利用图注意力网络来获得不同层次的表示,以便它们可以同时学习。长答案和短答案可以分别从段落级表示和词级表示中提取。通过这种方式,我们可以对两个粒度的答案之间的依赖关系进行建模,以便为彼此提供证据。我们联合训练这两个子任务,实验表明,我们的方法在长答案和短答案标准上都明显优于以前的系统。

网址: https://arxiv.org/abs/2005.05806

代码链接:

https://github.com/DancingSoul/NQ_BERT-DM

3. Integrating Semantic and Structural Information with Graph Convolutional Network for Controversy Detection

作者:Lei Zhong, Juan Cao, Qiang Sheng, Junbo Guo, Ziang Wang

摘要:识别社交媒体上有争议的帖子是挖掘公众情绪、评估事件影响、缓解两极分化观点的基础任务。然而,现有的方法不能1)有效地融合来自相关帖子内容的语义信息;2)保留回复关系建模的结构信息;3)正确处理与训练集中主题不同的帖子。为了克服前两个局限性,我们提出了主题-帖子-评论图卷积网络(TPC-GCN),它综合了来自主题、帖子和评论的图结构和内容的信息,用于帖子级别的争议检测。对于第三个限制,我们将模型扩展到分离的TPC-GCN(DTPC-GCN),将主题相关和主题无关的特征分离出来,然后进行动态融合。在两个真实数据集上的大量实验表明,我们的模型优于现有的方法。结果和实例分析表明,该模型能够将语义信息和结构信息有机地结合在一起,具有较强的通用性。

网址: https://arxiv.org/abs/2005.07886

4. Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward

作者:Luyang Huang, Lingfei Wu, Lu Wang

摘要:用于抽取摘要的序列到序列(sequence-to-sequence )模型已经被广泛研究,但是生成的摘要通常受到捏造的内容的影响,并且经常被发现是near-extractive的。我们认为,为了解决这些问题,摘要生成器应通过输入获取语义解释,例如通过结构化表示,以允许生成更多信息的摘要。在本文中,我们提出了一种新的抽取摘要框架--Asgard,它具有图形增强和语义驱动的特点。我们建议使用双重编码器-序列文档编码器和图形结构编码器-来保持实体的全局上下文和局部特征,并且相互补充。我们进一步设计了基于多项选择完形填空测试的奖励,以驱动模型更好地捕捉实体交互。结果表明,我们的模型在纽约时报和CNN/每日邮报的数据集上都比没有知识图作为输入的变体产生了更高的Rouge分数。与从大型预训练的语言模型中优化的系统相比,我们也获得了更好或可比的性能。评委进一步认为我们的模型输出信息更丰富,包含的不实错误更少。

网址: https://arxiv.org/abs/2005.01159

5. A Graph Auto-encoder Model of Derivational Morphology

作者:Valentin Hofmann, Hinrich Schutze, Janet B. Pierrehumberty

摘要:关于派生词的形态良好性(morphological well-formedness, MWF)建模工作在语言学中被认为是一个复杂而困难的问题,并且这方面的研究工作较少。我们提出了一个图自编码器学习嵌入以捕捉派生词中词缀和词干的兼容性信息。自编码器通过将句法和语义信息与来自心理词典的关联信息相结合,很好地模拟了英语中的MWF。

网址: http://www.phon.ox.ac.uk/jpierrehumbert/publications/Hofmann_etal_DGA_ACL2020.pdf

成为VIP会员查看完整内容
0
33

【导读】作为CCF推荐的A类国际学术会议,International ACM SIGIR Conference on Research and Development in Information Retrieval(国际计算机学会信息检索大会,简称 SIGIR)在信息检索领域享有很高的学术声誉,每年都会吸引全球众多专业人士参与。今年的 SIGIR 2020计划将于 2020年7月25日~30日在中国西安举行。本次大会共有555篇长文投稿,仅有147篇长文被录用,录用率约26%。专知小编提前为大家整理了六篇SIGIR 2020 基于图神经网络的推荐(GNN+RS)相关论文,这六篇论文分别出自中科大何向南老师和和昆士兰大学阴红志老师团队,供大家参考——捆绑推荐、Disentangled GCF、服装推荐、多行为推荐、全局属性GNN

CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN

1. Bundle Recommendation with Graph Convolutional Networks

作者:Jianxin Chang, Chen Gao, Xiangnan He, Yong Li, Depeng Jin

摘要:捆绑推荐(Bundle recommendation )旨在推荐一组商品供用户整体消费。现有的解决方案通过共享模型参数或多任务学习的方式将用户项目交互建模集成到捆绑推荐中,然而,这些方法不能显式建模项目与捆绑包(bundles)之间的隶属关系,不能探索用户选择捆绑包时的决策。在这项工作中,我们提出了一个用于捆绑推荐的图神经网络模型BGCN(Bundle Graph Convolutional Network)。BGCN将用户-项目交互、用户-捆绑包交互和捆绑包-项目从属关系统一到一个异构图中。以项目节点为桥梁,在用户节点和捆绑包节点之间进行图卷积传播,使学习到的表示能够捕捉到项目级的语义。通过基于hard-negative采样器的训练,可以进一步区分用户对相似捆绑包的细粒度偏好。在两个真实数据集上的实验结果表明,BGCN的性能有很高的提升,其性能比最新的基线高出10.77%到23.18%。

网址: https://arxiv.org/abs/2005.03475

2. Disentangled Graph Collaborative Filtering

作者:Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua

摘要:从交互数据中学习用户和项目的信息表示对于协同过滤(CF)至关重要。当前的嵌入函数利用用户-项目关系来丰富表示,从单个用户-项目实例演变为整体交互图。然而,这些方法在很大程度上以统一的方式对关系进行建模,而忽略了用户采用这些项目的意图的多样性,这可能是为了打发时间,为了兴趣,或者为其他人(如家庭)购物。这种统一的对用户兴趣建模的方法很容易导致次优表示,不能对不同的关系建模并在表示中分清用户意图。在这项工作中,我们特别关注用户意图细粒度上的用户-项目关系。因此,我们设计了一种新的模型- Disentangled图协同过滤(Disentangled Graph Collaborative Filtering ,DGCF),来理清这些因素并产生disentangled的表示。具体地说,通过在每个用户-项目交互意图上的分布建模,我们迭代地细化意图感知的交互图和表示。同时,我们鼓励不同的意图独立。这将生成disentangled的表示,有效地提取与每个意图相关的信息。我们在三个基准数据集上进行了广泛的实验,DGCF与NGCF、DisenGCN和MacridV AE这几个最先进的模型相比取得了显著的改进。进一步的分析揭示了DGCF在分解用户意图和表示的可解释性方面的优势。

网址:

http://staff.ustc.edu.cn/~hexn/

代码链接:

https://github.com/xiangwang1223/disentangled_graph_collaborative_filtering.

3. GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection

作者:Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, Lizhen Cui

摘要:近年来,推荐系统已经成为所有电子商务平台中不可缺少的功能。推荐系统的审查评级数据通常来自开放平台,这可能会吸引一群恶意用户故意插入虚假反馈,试图使推荐系统偏向于他们。此类攻击的存在可能会违反高质量数据始终可用的建模假设,而这些数据确实会影响用户的兴趣和偏好。因此,构建一个即使在攻击下也能产生稳定推荐的健壮推荐系统具有重要的现实意义。本文提出了一种基于GCN的用户表示学习框架GraphRf,该框架能够统一地进行稳健的推荐和欺诈者检测。在其端到端学习过程中,用户在欺诈者检测模块中被识别为欺诈者的概率自动确定该用户的评级数据在推荐模块中的贡献;而在推荐模块中输出的预测误差作为欺诈者检测模块中的重要特征。因此,这两个组成部分可以相互促进。经过大量的实验,实验结果表明我们的GraphRf在鲁棒评级预测和欺诈者检测这两个任务中具有优势。此外,所提出的GraphRf被验证为对现有推荐系统上的各种攻击具有更强的鲁棒性。

网址:

https://arxiv.org/abs/2005.10150

4. Hierarchical Fashion Graph Network for Personalized Outfit Recommendation

作者:Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, Tat-Seng Chua

摘要:服装推荐越来越受到网购服务商和时尚界的关注。与向用户推荐单个单品(例如,朋友或图片)的其他场景(例如,社交网络或内容共享)不同,服装推荐预测用户对一组匹配良好的时尚单品的偏好。因此,进行高质量的个性化服装推荐应满足两个要求:1)时尚单品的良好兼容性;2)与用户偏好的一致性。然而,目前的研究主要集中在其中一个需求上,只考虑了用户-全套服装(outfit)或全套服装-项目的关系,从而容易导致次优表示,限制了性能。在这项工作中,我们统一了两个任务,服装兼容性建模和个性化服装推荐。为此,我们开发了一个新的框架,层次时尚图网络(HFGN),用于同时建模用户、商品和成套服装之间的关系。特别地,我们构建了一个基于用户-全套服装交互和全套服装-项目映射的层次结构。然后,我们从最近的图神经网络中得到启发,在这种层次图上使用嵌入传播,从而将项目信息聚合到一个服装表示中,然后通过他/她的历史服装来提炼用户的表示。此外,我们还对这两个任务进行了联合训练,以优化这些表示。为了证明HFGN的有效性,我们在一个基准数据集上进行了广泛的实验,HFGN在NGNN和FHN等最先进的兼容性匹配模型基础上取得了显著的改进。

网址:

https://arxiv.org/abs/2005.12566

代码链接:

https://github.com/xcppy/hierarchical_fashion_graph_network

5. Multi-behavior Recommendation with Graph Convolutional Networks

作者:Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, Yong Li

摘要:传统的推荐模型通常只使用一种类型的用户-项目交互,面临着严重的数据稀疏或冷启动问题。利用多种类型的用户-项目交互(例如:点击和收藏)的多行为推荐可以作为一种有效的解决方案。早期的多行为推荐研究未能捕捉到行为对目标行为的不同程度的影响。它们也忽略了多行为数据中隐含的行为语义。这两个限制都使得数据不能被充分利用来提高对目标行为的推荐性能。在这项工作中,我们创新性地构造了一个统一的图来表示多行为数据,并提出了一种新的模型--多行为图卷积网络(Multi-Behavior Graph Convolutional Network,MBGCN)。MBGCN通过用户-项目传播层学习行为强度,通过项目-项目传播层捕获行为语义,较好地解决了现有工作的局限性。在两个真实数据集上的实验结果验证了该模型在挖掘多行为数据方面的有效性。我们的模型在两个数据集上的性能分别比最优基线高25.02%和6.51%。对冷启动用户的进一步研究证实了该模型的实用性。

网址:

http://staff.ustc.edu.cn/~hexn/

6. GAG: Global Atributed Graph Neural Network for Streaming Session-based Recommendation

作者:Ruihong Qiu, Hongzhi Yin, Zi Huang, Tong Chen

摘要:基于流会话的推荐(Streaming session-based recommendation,SSR)是一项具有挑战性的任务,它要求推荐器系统在流媒体场景(streaming scenario)中进行基于会话的推荐(SR)。在电子商务和社交媒体的现实应用中,在一定时间内产生的一系列用户-项目交互被分组为一个会话,这些会话以流的形式连续到达。最近的SR研究大多集中在静态集合上,即首先获取训练数据,然后使用该集合来训练基于会话的推荐器模型。他们需要对整个数据集进行几个epoch的训练,这在流式设置下是不可行的。此外,由于对用户信息的忽视或简单使用,它们很难很好地捕捉到用户的长期兴趣。虽然最近已经提出了一些流推荐策略,但它们是针对个人交互流而不是会话流而设计的。本文提出了一种求解SSR问题的带有Wasserstein 库的全局属性图(GAG)神经网络模型。一方面,当新的会话到达时,基于当前会话及其关联用户构造具有全局属性的会话图。因此,GAG可以同时考虑全局属性和当前会话,以了解会话和用户的更全面的表示,从而在推荐中产生更好的性能。另一方面,为了适应流会话场景,提出了Wasserstein库来帮助保存历史数据的代表性草图。在两个真实数据集上进行了扩展实验,验证了GAG模型与最新方法相比的优越性。

网址: https://sites.google.com/site/dbhongzhi/

成为VIP会员查看完整内容
0
44

1、 Adversarial Graph Embedding for Ensemble Clustering

作者:Zhiqiang Tao , Hongfu Liu , Jun Li , ZhaowenWang and Yun Fu;

摘要:Ensemble Clustering通常通过图分区方法将基本分区集成到共识分区(consensus partition)中,但这种方法存在两个局限性: 1) 它忽略了重用原始特征; 2)获得具有可学习图表示的共识分区(consensus partition)仍未得到充分研究。在本文中,我们提出了一种新颖的对抗图自动编码器(AGAE)模型,将集成聚类结合到深度图嵌入过程中。具体地,采用图卷积网络作为概率编码器,将特征内容信息与共识图信息进行联合集成,并使用简单的内积层作为解码器,利用编码的潜变量(即嵌入表示)重建图。此外,我们还开发了一个对抗正则化器来指导具有自适应分区依赖先验的网络训练。通过对8个实际数据集的实验,证明了AGAE在几种先进的深度嵌入和集成聚类方法上的有效性。

网址:https://www.ijcai.org/proceedings/2019/0494.pdf

2、Attributed Graph Clustering via Adaptive Graph Convolution

作者:Xiaotong Zhang, Han Liu, Qimai Li and Xiao-Ming Wu;

摘要:Attributed Graph聚类是一项具有挑战性的工作,它要求对图结构和节点属性进行联合建模。图卷积网络的研究进展表明,图卷积能够有效地将结构信息和内容信息结合起来,近年来基于图卷积的方法在一些实际属性网络上取得了良好的聚类性能。然而,对于图卷积如何影响聚类性能以及如何正确地使用它来优化不同图的性能,人们的了解有限。现有的方法本质上是利用固定低阶的图卷积,只考虑每个节点几跳内的邻居,没有充分利用节点关系,忽略了图的多样性。本文提出了一种自适应图卷积方法,利用高阶图卷积捕获全局聚类结构,并自适应地为不同的图选择合适的顺序。通过对基准数据集的理论分析和大量实验,验证了该方法的有效性。实验结果表明,该方法与现有的方法相比具有较好的优越性。

网址:https://www.zhuanzhi.ai/paper/bae18963457b08322d58e01c90e8e467

3、Dynamic Hypergraph Neural Networks

作者:Jianwen Jiang , Yuxuan Wei , Yifan Feng , Jingxuan Cao and Yue Gao;

摘要:近年来,基于图/超图(graph/hypergraph)的深度学习方法引起了研究者的广泛关注。这些深度学习方法以图/超图结构作为模型的先验知识。然而,隐藏的重要关系并没有直接表现在内在结构中。为了解决这个问题,我们提出了一个动态超图神经网络框架(DHGNN),它由两个模块的堆叠层组成:动态超图构造(DHG)和超图卷积(HGC)。考虑到最初构造的超图可能不适合表示数据,DHG模块在每一层上动态更新超图结构。然后引入超图卷积对超图结构中的高阶数据关系进行编码。HGC模块包括两个阶段:顶点卷积和超边界卷积,它们分别用于聚合顶点和超边界之间的特征。我们已经在标准数据集、Cora引文网络和微博数据集上评估了我们的方法。我们的方法优于最先进的方法。通过更多的实验验证了该方法对不同数据分布的有效性和鲁棒性。

网址:https://www.ijcai.org/proceedings/2019/0366.pdf

4、Exploiting Interaction Links for Node Classification with Deep Graph Neural Networks

作者:Hogun Park and Jennifer Neville;

摘要:节点分类是关系机器学习中的一个重要问题。然而,在图边表示实体间交互的场景中(例如,随着时间的推移),大多数当前方法要么将交互信息汇总为链接权重,要么聚合链接以生成静态图。在本文中,我们提出了一种神经网络结构,它可以同时捕获时间和静态交互模式,我们称之为Temporal-Static-Graph-Net(TSGNet)。我们的主要观点是,利用静态邻居编码器(可以学习聚合邻居模式)和基于图神经网络的递归单元(可以捕获复杂的交互模式),可以提高节点分类的性能。在我们对节点分类任务的实验中,与最先进的方法相比,TSGNet取得了显著的进步——与四个真实网络和一个合成数据集中的最佳竞争模型相比,TSGNet的分类错误减少了24%,平均减少了10%。

网址:https://www.ijcai.org/proceedings/2019/0447.pdf

5、Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks

作者:Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai and Philip S. Yu;

摘要:事件在现实世界中实时发生,可以是涉及多个人和物体的计划和组织场合。社交媒体平台发布了大量包含公共事件和综合话题的文本消息。然而,由于文本中事件元素的异构性以及显式和隐式的社交网络结构,挖掘社会事件是一项具有挑战性的工作。本文设计了一个事件元模式来表征社会事件的语义关联,并构建了一个基于事件的异构信息网络(HIN),该网络融合了外部知识库中的信息,提出了一种基于对偶流行度图卷积网络(PP-GCN)的细粒度社会事件分类模型。我们提出了一种基于事件间社会事件相似度(KIES)的知识元路径实例,并建立了一个加权邻域矩阵作为PP-GCN模型的输入。通过对真实数据收集的综合实验,比较各种社会事件检测和聚类任务。实验结果表明,我们提出的框架优于其他可选的社会事件分类技术。

网址:https://www.zhuanzhi.ai/paper/65dbfd1c2b65d01b2db1b66a3b4efdb6

6、Graph Contextualized Self-Attention Network for Session-based Recommendation

作者:Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang and Xiaofang Zhou;

摘要:基于会话的推荐旨在预测用户基于匿名会话的下一步行动,是许多在线服务(比如电子商务,媒体流)中的关键任务。近年来,在不使用递归网络和卷积网络的情况下,自注意力网络(SAN)在各种序列建模任务中取得了显著的成功。然而,SAN缺乏存在于相邻商品上的本地依赖关系,并且限制了其学习序列中商品的上下文表示的能力。本文提出了一种利用图神经网络和自注意力机制的图上下文自注意力模型(GC-SAN),用于基于会话的推荐。在GC-SAN中,我们动态地为会话序列构造一个图结构,并通过图神经网络(GNN)捕获丰富的局部依赖关系。然后,每个会话通过应用自注意力机制学习长期依赖关系。最后,每个会话都表示为全局首选项和当前会话兴趣的线性组合。对两个真实数据集的大量实验表明,GC-SAN始终优于最先进的方法。

网址:https://www.ijcai.org/proceedings/2019/0547.pdf

7、Graph Convolutional Network Hashing for Cross-Modal Retrieval

作者:Ruiqing Xu , Chao Li , Junchi Yan , Cheng Deng and Xianglong Liu;

摘要:基于深度网络的跨模态检索近年来取得了显著的进展。然而,弥补模态差异,进一步提高检索精度仍然是一个关键的瓶颈。本文提出了一种图卷积哈希(GCH)方法,该方法通过关联图学习模态统一的二进制码。一个端到端深度体系结构由三个主要组件构成:语义编码模块、两个特征编码网络和一个图卷积网络(GCN)。我们设计了一个语义编码器作为教师模块来指导特征编码过程,即学生模块,用于语义信息的挖掘。此外,利用GCN研究数据点之间的内在相似性结构,有助于产生有区别的哈希码。在三个基准数据集上的大量实验表明,所提出的GCH方法优于最先进的方法。

网址:https://www.ijcai.org/proceedings/2019/0138.pdf

成为VIP会员查看完整内容
0
37
小贴士
相关论文
Memory Augmented Graph Neural Networks for Sequential Recommendation
Chen Ma,Liheng Ma,Yingxue Zhang,Jianing Sun,Xue Liu,Mark Coates
5+阅读 · 2019年12月26日
Hyper-SAGNN: a self-attention based graph neural network for hypergraphs
Ruochi Zhang,Yuesong Zou,Jian Ma
5+阅读 · 2019年11月6日
Zekun Li,Zeyu Cui,Shu Wu,Xiaoyu Zhang,Liang Wang
5+阅读 · 2019年10月12日
Saurabh Verma,Zhi-Li Zhang
3+阅读 · 2019年9月25日
Signed Graph Attention Networks
Junjie Huang,Huawei Shen,Liang Hou,Xueqi Cheng
3+阅读 · 2019年9月5日
MR-GNN: Multi-Resolution and Dual Graph Neural Network for Predicting Structured Entity Interactions
Nuo Xu,Pinghui Wang,Long Chen,Jing Tao,Junzhou Zhao
5+阅读 · 2019年5月23日
Hao Peng,Jianxin Li,Qiran Gong,Senzhang Wang,Yuanxing Ning,Philip S. Yu
4+阅读 · 2019年2月25日
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
15+阅读 · 2019年1月3日
Rex Ying,Ruining He,Kaifeng Chen,Pong Eksombatchai,William L. Hamilton,Jure Leskovec
8+阅读 · 2018年6月6日
Ruoyu Li,Sheng Wang,Feiyun Zhu,Junzhou Huang
4+阅读 · 2018年1月10日
Top