大数据时代小样本如何学习?看这篇最新《小样本学习方法综述》论文

2019 年 3 月 31 日 专知
大数据时代小样本如何学习?看这篇最新《小样本学习方法综述》论文

【导读】基于神经网络的深度学习方法往往需要大量标注样本,而在很多领域往往是缺乏充足样本数据的,比如在医疗领域,高质量的医疗影像大数据样本很难获取,且人工标注成本较高。因此,亟待研究基于小样本数据集或弱标签标注的机器学习方法。最近,齐国君和罗杰波两位知名学者在ArXiv发布了关于小样本数据集的无监督与半监督学习综述论文,12页103篇参考文献,详细阐述了最新进展。


大数据时代的小数据挑战:无监督和半监督方法研究进展综述


摘要

在许多学习问题中都出现了小的数据挑战,由于深度神经网络的成功往往依赖于收集大量昂贵的标记数据。为了解决这一问题,人们在以无监督和半监督的方式训练具有小数据的复杂模型方面做了许多努力。本文就这两大类方法的研究进展进行综述。我们将在一个大的图谱中对一系列小数据模型进行分类,在这里我们将展示它们如何相互作用,从而激发对新思想的探索。我们将回顾学习转换等变、解纠缠、自我监督和半监督表示的标准,这些标准为最近的发展奠定了基础。许多无监督和半监督生成模型的实例都是在这些标准的基础上开发的,通过探索无标记数据的分布以获得更强大的表示,极大地扩展了现有自动编码器、生成对抗网(GANs)和其他深层网络的领域。在关注无监督和半监督方法的同时,我们还将对其他新出现的主题进行更广泛的回顾,从无监督和半监督领域的自适应,到转换等方差和不变性在训练大范围深度网络中的基本作用。我们旨在探索这一领域的主要理念、原则和方法,以揭示我们在解决大数据时代的小数据挑战的道路上的前进方向。


引言


本文旨在全面阐述无监督和半监督方法的最新进展,以解决在大量无标签数据可用的情况下使用少量有标签数据训练模型所面临的挑战。深度学习的成功往往取决于大量有标记数据,在这些数据中,数以百万计的图像被标记,以训练深度神经网络,使这些模型能够达到甚至超过人类的性能。

然而,在许多情况下,收集足够多的标记数据是具有挑战性的,这激发了许多研究努力,探索标记数据之外的非监督信息,为各种学习任务训练健壮的模型。

  • 无标计数据。虽然标记数据的数量非常少,但是未标记的数据规模可能非常大。那些没有标记的分布数据为学习鲁棒表示提供了重要线索,这些鲁棒表示可以推广到新的学习任务中。根据是否利用附加的标记示例来训练模型,可以使用无监督和半监督两种方式利用未标记的数据。无标记数据还可以帮助模型缩小不同任务之间的领域差距,这导致了大量的无监督和半监督领域适应方法。

  • 辅助任务。辅助任务也可以作为侧边信息的重要来源来缓解小数据问题。例如,a相关任务可以是与目标任务相关的一组不相交概念上的学习问题。这属于零样本学习(ZSL)和小样本学习(FSL)问题。在广义上,ZSL问题可以看作是一个无监督学习问题,目标任务上没有带标记的例子,而FSL是半监督的,几乎没有可用的带标记的数据。两者都旨在将语义知识或学习知识(如元学习[3]、[4])从源任务转移到目标任务。

本研究以无监督和半监督方法为研究重点,以无标记的例子来解决小数据问题。虽然我们将不回顾ZSL和FSL方法,利用辅助任务的信息,这将是有益的,我们开始从一个大的图谱详述所有这些方法。这将使我们更好地理解我们在克服小数据挑战的过程中所处的位置。

图 1. 小数据方法概览


图2. 该图展示了在无监督和半监督方法的情况下,小数据方法的分类

更多请阅读论文查看:

http://www.zhuanzhi.ai/paper/e0b5e03d4d0358b7bf3886ebce3cae83


【论文便捷下载】

请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“SDL2019” 就可以获取《大数据时代的小数据挑战:无监督和半监督方法研究进展综述》的下载链接~ 



-END-

专 · 知

专知《深度学习:算法到实战》课程全部完成!520+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询《深度学习:算法到实战》课程,咨询技术商务合作~

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
104

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。

最近深度神经网络已经在监督识别任务上取得了令人振奋的突破,但是深度神经网络要求每个类都有足够 多的且完全标注的训练数据。如何从少数训练样本中学习并识别新的类别,对于深度神经网络来说是一个具有挑战性的问题。针对如何解决少样本学习的问题,全面总结了现有的基于深度神经网络的少样本学习方法,涵盖了方法 所用模型、数据集及评估结果等各个方面。具体地,针对基于深度神经网络的少样本学习方法,提出将其分为四种 类别,即数据增强方法、迁移学习方法、度量学习方法和元学习的方法;对于每个类别,进一步将其分为几个子类 别,并且在每个类别与方法之间进行一系列比较,以显示各种方法的优劣和各自的特点。最后,强调了现有方法的局限性,并指出了少样本学习研究领域的未来研究方向。

成为VIP会员查看完整内容
0
100

【导读】元学习旨在学会学习,是当下研究热点之一。最近来自爱丁堡大学的学者发布了关于元学习最新综述论文《Meta-Learning in Neural Networks: A Survey》,值得关注,详述了元学习体系,包括定义、方法、应用、挑战,成为不可缺少的文献。

近年来,元学习领域,或者说“学会学习的学习”,引起了人们极大的兴趣。与传统的人工智能方法(使用固定的学习算法从头开始解决给定的任务)不同,元学习的目的是改进学习算法本身,考虑到多次学习的经验。这个范例提供了一个机会来解决深度学习的许多传统挑战,包括数据和计算瓶颈,以及泛化的基本问题。在这项综述中,我们描述了当代元学习的景观。我们首先讨论元学习的定义,并将其定位于相关领域,如迁移学习、多任务学习和超参数优化。然后,我们提出了一个新的分类法,对元学习方法的空间进行了更全面的细分。我们综述了元学习的一些有前途的应用和成功案例,包括小样本学习、强化学习和体系架构搜索。最后,我们讨论了突出的挑战和未来研究的有希望的领域。

https://arxiv.org/abs/2004.05439

概述

现代机器学习模型通常是使用手工设计的固定学习算法,针对特定任务从零开始进行训练。基于深度学习的方法在许多领域都取得了巨大的成功[1,2,3]。但是有明显的局限性[4]。例如,成功主要是在可以收集或模拟大量数据的领域,以及在可以使用大量计算资源的领域。这排除了许多数据本质上是稀有或昂贵的[5],或者计算资源不可用的应用程序[6,7]。

元学习提供了另一种范式,机器学习模型可以在多个学习阶段获得经验——通常覆盖相关任务的分布——并使用这些经验来改进未来的学习性能。这种“学会学习”[8]可以带来各种好处,如数据和计算效率,它更适合人类和动物的学习[9],其中学习策略在一生和进化时间尺度上都得到改善[10,9,11]。机器学习在历史上是建立在手工设计的特征上的模型,而特征的选择往往是最终模型性能的决定因素[12,13,14]。深度学习实现了联合特征和模型学习的承诺[15,16],为许多任务提供了巨大的性能改进[1,3]。神经网络中的元学习可以看作是集成联合特征、模型和算法学习的下一步。神经网络元学习有着悠久的历史[17,18,8]。然而,它作为推动当代深度学习行业前沿的潜力,导致了最近研究的爆炸性增长。特别是,元学习有可能缓解当代深度学习[4]的许多主要批评,例如,通过提供更好的数据效率,利用先验知识转移,以及支持无监督和自主学习。成功的应用领域包括:小样本图像识别[19,20]、无监督学习[21]、数据高效[22,23]、自导向[24]强化学习(RL)、超参数优化[25]和神经结构搜索(NAS)[26, 27, 28]。

在文献中可以找到许多关于元学习的不同观点。特别是由于不同的社区对这个术语的使用略有不同,所以很难定义它。与我们[29]相关的观点认为,元学习是管理“没有免费午餐”定理[30]的工具,并通过搜索最适合给定问题或问题族的算法(归纳偏差)来改进泛化。然而,从广义上来说,这个定义可以包括迁移、多任务、特征选择和模型集成学习,这些在今天通常不被认为是元学习。另一个关于元学习[31]的观点广泛地涵盖了基于数据集特性的算法选择和配置技术,并且很难与自动机器学习(AutoML)[32]区分开来。在这篇论文中,我们关注当代的神经网络元学习。我们将其理解为算法或归纳偏差搜索,但重点是通过端到端学习明确定义的目标函数(如交叉熵损失、准确性或速度)来实现的。

因此,本文提供了一个独特的,及时的,最新的调查神经网络元学习领域的快速增长。相比之下,在这个快速发展的领域,以往的研究已经相当过时,或者关注于数据挖掘[29、33、34、35、36、37、31]、自动[32]的算法选择,或者元学习的特定应用,如小样本学习[38]或神经架构搜索[39]。

我们讨论元学习方法和应用。特别是,我们首先提供了一个高层次的问题形式化,它可以用来理解和定位最近的工作。然后,我们在元表示、元目标和元优化器方面提供了一种新的方法分类。我们调查了几个流行和新兴的应用领域,包括少镜头、强化学习和架构搜索;并对相关的话题如迁移学习、多任务学习和自动学习进行元学习定位。最后,我们讨论了尚未解决的挑战和未来研究的领域。

未来挑战:

-元泛化 元学习在不同任务之间面临着泛化的挑战,这与传统机器学习中在不同实例之间进行泛化的挑战类似。

  • 任务分布的多模态特性
  • 任务族
  • 计算代价
  • 跨模态迁移和异构任务

总结

元学习领域最近出现了快速增长的兴趣。这带来了一定程度的混乱,比如它如何与邻近的字段相关联,它可以应用到什么地方,以及如何对它进行基准测试。在这次综述中,我们试图通过从方法学的角度对这一领域进行彻底的调查来澄清这些问题——我们将其分为元表示、元优化器和元目标的分类;从应用的角度来看。我们希望这项调查将有助于新人和实践者在这个不断增长的领域中定位自己,并强调未来研究的机会。

成为VIP会员查看完整内容
0
142

摘要:近年来,深度学习模型在图像、语音、文本识别等领域内取得了显著成就。然而,深度学习模型严重依赖于大量标签数据,使得其在数据缺乏的特殊领域内应用严重受限。面对数据缺乏等现实挑战,很多学者针对数据依赖小的弱监督机器学习方法开展研究,出现了很多典型研究方向,如小样本学习、零样本学习等。针对弱监督机器学习方法,系统阐述了小样本学习、零样本学习、零—小样本学习的问题定义、当前主要方法以及主流实验设计,最后基于当前研究中出现的问题,对下一阶段研究方向进行了总结展望。

成为VIP会员查看完整内容
0
81

​【导读】图像分类是计算机视觉中的基本任务之一,深度学习的出现是的图像分类技术趋于完善。最近,自监督学习与预训练技术的发展使得图像分类技术出现新的变化,这篇论文概述了最新在实际情况中少标签小样本等情况下,关于自监督学习、半监督、无监督方法的综述,值得看!

地址:

https://www.zhuanzhi.ai/paper/6d160a5f8634d25a2feda7a30e1e5132

摘要

虽然深度学习策略在计算机视觉任务中取得了突出的成绩,但仍存在一个问题。目前的策略严重依赖于大量的标记数据。在许多实际问题中,创建这么多标记的训练数据是不可行的。因此,研究人员试图将未标记的数据纳入到培训过程中,以获得与较少标记相同的结果。由于有许多同时进行的研究,很难掌握最近的发展情况。在这项调查中,我们提供了一个概述,常用的技术和方法,在图像分类与较少的标签。我们比较了21种方法。在我们的分析中,我们确定了三个主要趋势。1. 基于它们的准确性,现有技术的方法可扩展到实际应用中。2. 为了达到与所有标签的使用相同的结果所需要的监督程度正在降低。3.所有方法都共享公共技术,只有少数方法结合这些技术以获得更好的性能。基于这三个趋势,我们发现了未来的研究机会。

1. 概述

深度学习策略在计算机视觉任务中取得了显著的成功。它们在图像分类、目标检测或语义分割等各种任务中表现最佳。

图1: 这张图说明并简化了在深度学习训练中使用未标记数据的好处。红色和深蓝色的圆圈表示不同类的标记数据点。浅灰色的圆圈表示未标记的数据点。如果我们只有少量的标记数据可用,我们只能对潜在的真实分布(黑线)做出假设(虚线)。只有同时考虑未标记的数据点并明确决策边界,才能确定这种真实分布。

深度神经网络的质量受到标记/监督图像数量的强烈影响。ImageNet[26]是一个巨大的标记数据集,它允许训练具有令人印象深刻的性能的网络。最近的研究表明,即使比ImageNet更大的数据集也可以改善这些结果。但是,在许多实际的应用程序中,不可能创建包含数百万张图像的标记数据集。处理这个问题的一个常见策略是迁移学习。这种策略甚至可以在小型和专门的数据集(如医学成像[40])上改进结果。虽然这对于某些应用程序来说可能是一个实际的解决方案,但基本问题仍然存在: 与人类不同,监督学习需要大量的标记数据。

对于给定的问题,我们通常可以访问大量未标记的数据集。Xie等人是最早研究无监督深度学习策略来利用这些数据[45]的人之一。从那时起,未标记数据的使用被以多种方式研究,并创造了研究领域,如半监督、自我监督、弱监督或度量学习[23]。统一这些方法的想法是,在训练过程中使用未标记的数据是有益的(参见图1中的说明)。它要么使很少有标签的训练更加健壮,要么在某些不常见的情况下甚至超过了监督情况下的性能[21]。

由于这一优势,许多研究人员和公司在半监督、自我监督和非监督学习领域工作。其主要目标是缩小半监督学习和监督学习之间的差距,甚至超越这些结果。考虑到现有的方法如[49,46],我们认为研究处于实现这一目标的转折点。因此,在这个领域有很多正在进行的研究。这项综述提供了一个概述,以跟踪最新的在半监督,自监督和非监督学习的方法。

大多数综述的研究主题在目标、应用上下文和实现细节方面存在差异,但它们共享各种相同的思想。这项调查对这一广泛的研究课题进行了概述。这次调查的重点是描述这两种方法的异同。此外,我们还将研究不同技术的组合。

2. 图像分类技术

在这一节中,我们总结了关于半监督、自监督和非监督学习的一般概念。我们通过自己对某些术语的定义和解释来扩展这一总结。重点在于区分可能的学习策略和最常见的实现策略的方法。在整个综述中,我们使用术语学习策略,技术和方法在一个特定的意义。学习策略是算法的一般类型/方法。我们把论文方法中提出的每个算法都称为独立算法。方法可以分为学习策略和技术。技术是组成方法/算法的部分或思想。

2.1 分类方法

监督、半监督和自我监督等术语在文献中经常使用。很少有人给出明确的定义来区分这两个术语。在大多数情况下,一个粗略的普遍共识的意义是充分的,但我们注意到,在边界情况下的定义是多种多样的。为了比较不同的方法,我们需要一个精确的定义来区分它们。我们将总结关于学习策略的共识,并定义我们如何看待某些边缘案例。一般来说,我们根据使用的标记数据的数量和训练过程监督的哪个阶段来区分方法。综上所述,我们把半监督策略、自我学习策略和无监督学习策略称为reduced减约监督学习策略。图2展示了四种深度学习策略。

图2: 插图的四个深学习策略——红色和深蓝色的圆圈表示标记数据点不同的类。浅灰色的圆圈表示未标记的数据点。黑线定义了类之间的基本决策边界。带条纹的圆圈表示在训练过程的不同阶段忽略和使用标签信息的数据点。

监督学习 Supervised Learning

监督学习是深度神经网络图像分类中最常用的方法。我们有一组图像X和对应的标签或类z。设C为类别数,f(X)为X∈X的某个神经网络的输出,目标是使输出与标签之间的损失函数最小化。测量f(x)和相应的z之间的差的一个常用的损失函数是交叉熵。

迁移学习

监督学习的一个限制因素是标签的可用性。创建这些标签可能很昂贵,因此限制了它们的数量。克服这一局限的一个方法是使用迁移学习。

迁移学习描述了训练神经网络的两个阶段的过程。第一个阶段是在大型通用数据集(如ImageNet[26])上进行有无监督的训练。第二步是使用经过训练的权重并对目标数据集进行微调。大量的文献表明,即使在小的领域特定数据集[40]上,迁移学习也能改善和稳定训练。

半监督学习

半监督学习是无监督学习和监督学习的混合.

Self-supervised 自监督学习

自监督使用一个借托pretext任务来学习未标记数据的表示。借托pretext任务是无监督的,但学习表征往往不能直接用于图像分类,必须进行微调。因此,自监督学习可以被解释为一种无监督的、半监督的或其自身的一种策略。我们将自我监督学习视为一种特殊的学习策略。在下面,我们将解释我们是如何得出这个结论的。如果在微调期间需要使用任何标签,则不能将该策略称为无监督的。这与半监督方法也有明显的区别。标签不能与未标记的数据同时使用,因为借托pretext任务是无监督的,只有微调才使用标签。对我们来说,将标记数据的使用分离成两个不同的子任务本身就是一种策略的特征。

2.2 分类技术集合

在减少监督的情况下,可以使用不同的技术来训练模型。在本节中,我们将介绍一些在文献中多种方法中使用的技术。

一致性正则化 Consistency regularization

一个主要的研究方向是一致性正则化。在半监督学习过程中,这些正则化被用作数据非监督部分的监督损失的附加损失。这种约束导致了改进的结果,因为在定义决策边界时可以考虑未标记的数据[42,28,49]。一些自监督或无监督的方法甚至更进一步,在训练中只使用这种一致性正则化[21,2]。

虚拟对抗性训练(VAT)

VAT[34]试图通过最小化图像与转换后的图像之间的距离,使预测不受小转换的影响。

互信息(MI)

MI定义为联合分布和边缘分布[8]之间的Kullback Leiber (KL)散度。

熵最小化(EntMin)

Grandvalet和Bengio提出通过最小化熵[15]来提高半监督学习的输出预测。

Overclustering

过度聚类在减少监督的情况下是有益的,因为神经网络可以自行决定如何分割数据。这种分离在有噪声的数据中或在中间类被随机分为相邻类的情况下是有用的。

Pseudo-Labels

一种估计未知数据标签的简单方法是伪标签

3. 图像分类模型

3.1 半监督学习

四种选择的半监督方法的图解——使用的方法在每张图像下面给出。输入在左边的蓝色方框中给出。在右侧提供了该方法的说明。一般来说,这个过程是自上而下组织的。首先,输入图像经过无或两个不同的随机变换预处理。自动增广[9]是一种特殊的增广技术。下面的神经网络使用这些预处理图像(x, y)作为输入。损失的计算(虚线)对于每种方法都是不同的,但是共享公共部分。所有的方法都使用了标记和预测分布之间的交叉熵(CE)。所有的方法还使用了不同预测输出分布(Pf(x), Pf(y))之间的一致性正则化。

3.2 自监督学习

四种选择的自我监督方法的图解——使用的方法在每张图像下面给出。输入在左边的红色方框中给出。在右侧提供了该方法的说明。微调部分不包括在内。一般来说,这个过程是自上而下组织的。首先,对输入图像进行一两次随机变换预处理或分割。下面的神经网络使用这些预处理图像(x, y)作为输入。损失的计算(虚线)对于每种方法都是不同的。AMDIM和CPC使用网络的内部元素来计算损失。DeepCluster和IIC使用预测的输出分布(Pf(x)、Pf(y))来计算损耗

3.3 21种图像分类方法比较

21种图像分类方法及其使用技术的概述——在左侧,第3节中回顾的方法按学习策略排序。第一行列出了在2.2小节中讨论过的可能的技术。根据是否可以使用带标签的数据,将这些技术分为无监督技术和有监督技术。技术的缩写也在第2.2小节中给出。交叉熵(Cross-entropy, CE)将CE的使用描述为训练损失的一部分。微调(FT)描述了交叉熵在初始训练后(例如在一个借口任务中)对新标签的使用。(X)指该技术不是直接使用,而是间接使用。个别的解释由所指示的数字给出。1 - MixMatch通过锐化预测[3],隐式地实现了熵最小化。2 - UDA预测用于过滤无监督数据的伪标签。3 -尽量减少相互信息的目的作为借口任务,例如视图之间的[2]或层之间的[17]。4 -信息的丢失使相互信息间接[43]最大化。5 - Deep Cluster使用K-Means计算伪标签,以优化分配为借口任务。6 - DAC使用元素之间的余弦距离来估计相似和不相似的项。可以说DAC为相似性问题创建了伪标签。

4. 实验比较结果

报告准确度的概述——第一列说明使用的方法。对于监督基线,我们使用了最好的报告结果,作为其他方法的基线。原始论文在准确度后的括号内。第二列给出了体系结构及其参考。第三列是预印本的出版年份或发行年份。最后四列报告了各自数据集的最高准确度分数%。

5 结论

在本文中,我们概述了半监督、自监督和非监督技术。我们用21种不同的方法分析了它们的异同和组合。这项分析确定了几个趋势和可能的研究领域。

我们分析了不同学习策略(半监督学习策略、自监督学习策略和无监督学习策略)的定义,以及这些学习策略中的常用技术。我们展示了这些方法一般是如何工作的,它们使用哪些技术,以及它们可以被归类为哪种策略。尽管由于不同的体系结构和实现而难以比较这些方法的性能,但我们确定了三个主要趋势。

ILSVRC-2012的前5名正确率超过90%,只有10%的标签表明半监督方法适用于现实问题。然而,像类别不平衡这样的问题并没有被考虑。未来的研究必须解决这些问题。

监督和半监督或自监督方法之间的性能差距正在缩小。有一个数据集甚至超过了30%。获得可与全监督学习相比的结果的标签数量正在减少。未来的研究可以进一步减少所需标签的数量。我们注意到,随着时间的推移,非监督方法的使用越来越少。这两个结论使我们认为,无监督方法在未来的现实世界中对图像分类将失去意义。

我们的结论是,半监督和自监督学习策略主要使用一套不同的技术。通常,这两种策略都使用不同技术的组合,但是这些技术中很少有重叠。S4L是目前提出的唯一一种消除这种分离的方法。我们确定了不同技术的组合有利于整体性能的趋势。结合技术之间的微小重叠,我们确定了未来可能的研究机会。

参考文献:

[1] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many consistent explanations of unlabeled data: Why you should average. In International Conference on Learning Representations, 2019.

[2] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual information across views. In Advances in Neural Information Processing Systems, pages 15509–15519, 2019.

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Information Processing Systems, pages 5050–5060, 2019.

[4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.

[5] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering. 2017 IEEE International Conference on Computer Vision (ICCV), pages 5880–5888, 2017.

成为VIP会员查看完整内容
0
112
小贴士
相关VIP内容
相关论文
A Survey on Bayesian Deep Learning
Hao Wang,Dit-Yan Yeung
40+阅读 · 2020年7月2日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Jae Woong Soh,Sunwoo Cho,Nam Ik Cho
28+阅读 · 2020年2月27日
Yash Srivastava,Vaishnav Murali,Shiv Ram Dubey,Snehasis Mukherjee
4+阅读 · 2019年8月27日
Few-shot Learning: A Survey
Yaqing Wang,Quanming Yao
305+阅读 · 2019年4月10日
Transfer Adaptation Learning: A Decade Survey
Lei Zhang
29+阅读 · 2019年3月12日
Ziwei Zhang,Peng Cui,Wenwu Zhu
38+阅读 · 2018年12月11日
Learning Embedding Adaptation for Few-Shot Learning
Han-Jia Ye,Hexiang Hu,De-Chuan Zhan,Fei Sha
8+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Qianru Sun,Yaoyao Liu,Tat-Seng Chua,Bernt Schiele
5+阅读 · 2018年12月6日
Joaquin Vanschoren
109+阅读 · 2018年10月8日
Mohammadhosein Hasanbeig,Alessandro Abate,Daniel Kroening
5+阅读 · 2018年4月22日
Top