【斯坦福大学Jure Leskovec】图神经网络GNN研究进展:表达性、预训练、OGB,71页ppt

4 月 23 日 专知
【斯坦福大学Jure Leskovec】图神经网络GNN研究进展:表达性、预训练、OGB,71页ppt

【导读】图神经网络依然是研究焦点之一。最近在WWW2020的DL4G@WWW2020论坛,斯坦福大学Jure Leskovec副教授介绍了图神经网络研究最新进展,包括GNN表现力、预训练和公开图神经网络基准等。值得关注。




近年来,深度学习领域关于图神经网络(Graph Neural Networks,GNN)的研究热情日益高涨,图网络已经成为各大深度学习顶会的研究热点。GNN 处理非结构化数据时的出色能力使其在网络数据分析、推荐系统、物理建模、自然语言处理和图上的组合优化问题方面都取得了新的突破。但是,大部分的图网络框架的建立都是基于研究者的先验或启发性知识,缺少清晰的理论支撑。

https://www.aminer.cn/dl4g_www2020

Jure Leskovec

图网络领域的大牛Jure Leskovec,是斯坦福大学计算机学院的副教授,也是图表示学习方法 node2vec 和 GraphSAGE 作者之一。在谷歌学术搜索(Google Scholar)上,Jure拥有接近4.5万的论文引用数量,H指数为84。




专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“GNN71” 就可以获取【斯坦福大学Jure Leskovec】图神经网络GNN研究进展:表达性、预训练、OGB,71页ppt》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

Jure Leskovec,斯坦福大学计算机科学副教授。 研究重点是对大型社会和信息网络进行挖掘和建模,它们的演化,信息的传播以及对它们的影响。 调查的问题是由大规模数据,网络和在线媒体引起的。

【导读】图神经网络依然是研究焦点之一。最近在WWW2020的DL4G@WWW2020论坛,斯坦福大学Jure Leskovec副教授介绍了图神经网络研究最新进展,包括GNN表现力、预训练和公开图神经网络基准等。值得关注。

近年来,深度学习领域关于图神经网络(Graph Neural Networks,GNN)的研究热情日益高涨,图网络已经成为各大深度学习顶会的研究热点。GNN 处理非结构化数据时的出色能力使其在网络数据分析、推荐系统、物理建模、自然语言处理和图上的组合优化问题方面都取得了新的突破。但是,大部分的图网络框架的建立都是基于研究者的先验或启发性知识,缺少清晰的理论支撑。

https://www.aminer.cn/dl4g_www2020

Jure Leskovec

图网络领域的大牛Jure Leskovec,是斯坦福大学计算机学院的副教授,也是图表示学习方法 node2vec 和 GraphSAGE 作者之一。在谷歌学术搜索(Google Scholar)上,Jure拥有接近4.5万的论文引用数量,H指数为84。

下载链接: 链接: https://pan.baidu.com/s/1gg9qvsjZVp3nGB-0TSkv_w 提取码: mtth

成为VIP会员查看完整内容
0
83

报告简介: 图形领域的机器学习是一项重要而普遍的任务,其应用范围从药物设计到社交网络中的友情推荐。该领域的主要挑战是找到一种表示或编码图形结构的方法,以便机器学习模型可以很方便地利用它。 报告中介绍了深度学习的技术,自动学习将图形结构编码为低维嵌入。以及表示学习的关键进展,包括图形卷积网络及其表示能力,探讨了它在Web级推荐系统、医疗保健、知识表示和推理方面的应用。

嘉宾介绍: 领域的大牛Jure Leskovec,是斯坦福大学计算机学院的副教授,也是图表示学习方法 node2vec 和 GraphSAGE 作者之一。研究重点是对大型社会和信息网络进行挖掘和建模,它们的演化,信息的传播以及对它们的影响。 Jure Leskovec主页

成为VIP会员查看完整内容
0
81

题目: GNNExplainer: Generating Explanations for Graph Neural Networks

简介: 图神经网络(GNN)通过沿输入图的边缘递归传递神经消息,将节点特征信息与图结构结合在一起。但是同时包含图结构和特征信息会导致模型复杂,并且解释GNN所做的预测仍未解决。在这里,我们提出GNNExplainer,这是第一种通用的,与模型无关的方法,可为任何基于GNN的模型的预测提供可解释性。给定一个实例,GNNExplainer会确定紧凑的子图结构和节点特征的一小部分,这些特征对GNN的预测至关重要。此外,GNNExplainer可以为整个实例类生成一致而简洁的解释。我们将GNNExplainer公式化为优化任务,该优化任务可最大化GNN的预测与可能的子图结构的分布之间的相互信息。在合成图和真实世界图上进行的实验表明,我们的方法可以识别重要的图结构以及节点特征,并且比基准性能高出17.1%。 GNNExplainer提供了各种好处,从可视化语义相关结构的能力到可解释性,再到洞悉有缺陷的GNN的错误。

作者简介: 领域的大牛Jure Leskovec,是斯坦福大学计算机学院的副教授,也是图表示学习方法 node2vec 和 GraphSAGE 作者之一。研究重点是对大型社会和信息网络进行挖掘和建模,它们的演化,信息的传播以及对它们的影响。 调查的问题是由大规模数据,网络和在线媒体引起的。 Jure Leskovec主页

代码链接: https://github.com/RexYing/gnn-model-explainer

成为VIP会员查看完整内容
0
44
小贴士
相关论文
A Collective Learning Framework to Boost GNN Expressiveness
Mengyue Hang,Jennifer Neville,Bruno Ribeiro
13+阅读 · 3月26日
Wenwu Zhu,Xin Wang,Peng Cui
17+阅读 · 1月2日
Hyper-SAGNN: a self-attention based graph neural network for hypergraphs
Ruochi Zhang,Yuesong Zou,Jian Ma
8+阅读 · 2019年11月6日
Tutorial on NLP-Inspired Network Embedding
Boaz Shmueli
4+阅读 · 2019年10月16日
Saurabh Verma,Zhi-Li Zhang
4+阅读 · 2019年9月25日
Wei-Lin Chiang,Xuanqing Liu,Si Si,Yang Li,Samy Bengio,Cho-Jui Hsieh
9+阅读 · 2019年8月8日
Younjoo Seo,Andreas Loukas,Nathanaël Perraudin
4+阅读 · 2019年6月5日
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
3+阅读 · 2019年4月25日
Keyulu Xu,Weihua Hu,Jure Leskovec,Stefanie Jegelka
15+阅读 · 2018年10月1日
Top