来源:哈尔滨工业大学、自然语言处理研究所(HIT-NLP)
2022年11月30日,OpenAI推出全新的对话式通用人工智能工具——ChatGPT。ChatGPT表现出了非常惊艳的语言理解、生成、知识推理能力,它可以很好地理解用户意图,做到有效的多轮沟通,并且回答内容完整、重点清晰、有概括、有逻辑、有条理。ChatGPT上线后,5天活跃用户数高达100万,2个月活跃用户数已达1个亿,成为历史上增长最快的消费者应用程序。除了被广大用户追捧外,ChatGPT还受到了各国政府、企业界、学术界的广泛关注,使人们看到了解决自然语言处理这一认知智能核心问题的一条可能的路径,并被认为向通用人工智能迈出了坚实的一步,将对搜索引擎构成巨大的挑战,甚至将取代很多人的工作,更将颠覆很多领域和行业。 哈工大自然语言处理研究所组织多位老师和同学撰写了本调研报告,从技术原理、应用场景、未来发展等方面对ChatGPT进行了尽量详尽的介绍及总结。
本报告仅供内部参考。 主要编撰人员 第一章由车万翔、杨沐的、张伟男、赵妍妍、冯骁骋、孙承杰、李佳朋编写;第二章由张伟男、隋典伯、高翠芸、朱庆福、李明达、王雪松编写;第三章由刘铭、朱聪慧、汤步洲编写;第四章由徐永东、高翠芸、朱庆福编写;第五章由杨沐昀、张伟男、韩一、庄子或编写;第六章由隋典伯、高翠芸编写;第七章由车万翔、刘铭编写。参与各章审校工作的还有:崔一鸣、徐志明等。 报告整体由车万翔统稿。
目录
第一章 ChatGPT的背景与意义
1.1 自然语言处理的发展历史 1.2 大规模预训练语言模型的技术发展历程 1.3 ChatGPT技术发展历程 1.3.1 ChatGPT的相关技术 1.3.2 ChatGPT技术发展脉络的总结 1.3.3 ChatGPT的未来技术发展方向 1.4 ChatGPT的优势与劣势 1.4.1 ChatGPT的优势 1.4.2 ChatGPT的劣势 1.5 ChatGPT的应用前景 1.5.1 在人工智能行业的应用前景及影响 1.5.2 在其他行业的应用前景及影响 1.6 ChatGPT 带来的风险与挑战 第二章 ChatGPT相关核心算法
2.1 基于Transformer的预训练语言模型.. 2.1.1 编码预训练语言模型(Encoder-only Pre-trained Models) 2.1.2 解码预训练语言模型(Decoder-only Pre-trained Models) 2.1.3 基于编解码架构的预训练语言模型(Encoder-decoder Pre-trained Models) 2.2 提示学习与指令精调 2.2.1 提示学习概述 2.2.2 ChatGPT中的指令学习 2.3 思维链(Chain of Thought,COT) 2.4 基于人类反馈的强化学习(Reinforcement Learning with Hu-man Feedback,RLHF) 第三章 大模型训练与部署
3.1 大模型并行计算技术 3.2 并行计算框架 3.3 模型部署 3.3.1 预训练模型部署的困难 3.3.2 部署框架和部署工具 3.3.3 部署技术和优化方法 3.4 预训练模型的压缩 3.4.1 模型压缩方案概述 3.4.2 结构化模型压缩策略 3.4.3 非结构化模型压缩策略 3.4.4 模型压缩小结 第四章 ChatGPT相关数据集
4.1 预训练数据集 4.1.1 文本预训练数据集 4.1.2 代码预训练数据集 4.2 人工标注数据规范及相关数据集. 4.2.1 指令微调工作流程及数据集构建方法 4.2.2 常见的指令微调数据集 4.2.3 构建指令微调数据集的关键问题 第五章 大模型评价方法
5.1 模型评价方式 5.1.1人工评价 5.1.2 自动评价 5.2 模型评价指标 5.2.1 准确性 5.2.2 不确定性 5.2.3 攻击性 5.2.4 毒害性 5.2.5 公平性与偏见性 5.2.6 鲁棒性 5.2.7 高效性 5.3 模型评价方法小结 第六章 现有大模型及对话式通用人工智能系统
6.1 现有大模型对比 6.2 对话式通用人工智能系统调研 6.2.1 对话式通用人工智能系统 6.2.2不同系统之间的比较 第七章 自然语言处理的未来发展方向
7.1 提高ChatGPT的能力 7.2 加深对模型的认识 7.3 实际应用 7.4 从语言到AGI的探索之路
ChatGPT市场反应热烈,国内外巨头纷纷入场
据统计,ChatGPT日活跃用户数的增速远超Instagram,1月份平均每天有超过1300万名独立访问者使用ChatGPT,是去年12月份的两倍多;国内外科技巨头都非常重视ChatGPT引发的科技浪潮,积极布局生成式AI,国内厂商(百度、腾讯等)也高度关注ChatGPT,积极探索前沿技术,相关深度应用也即将推出。
ChatGPT经历多类技术路线演化,逐步成熟与完善
ChatGPT所能实现的人类意图,来自于机器学习、神经网络以及Transformer模型的多种技术模型积累。Transformer建模方法成熟以后,使用一套统一的工具来开发各种模态的基础模型这种理念得以成熟,随后GPT-1、GPT-2、GPT-3模型持续演化升级,最终孵化出ChatGPT文本对话应用。
AIGC跨模态产业生态逐步成熟,商用落地未来可期
AIGC产业生态当前在文本、音频、视频等多模态交互功能上持续演化升级,奠定了多场景的商用基础。跨模态生成技术也有望成为真正实现认知和决策智能的转折点。
ChatGPT乘东风,商业架构日益清晰
随着ChatGPT Plus发布,商业化序幕已经拉开。ChatGPT在传媒、影视、营销、娱乐以及数实共生助力产业升级等领域均可产生极大助益,提升生产力曲线,多维度赋能虚拟经济和实体经济。
GPT-4来了!今日凌晨,万众瞩目的大型多模态模型GPT-4正式发布! OpenAI CEO Sam Altman直接介绍说:
这是我们迄今为止功能最强大的模型!
图灵奖三巨头之一Geoffrey Hinton对此赞叹不已,「毛虫吸取了营养之后,就会化茧为蝶。而人类提取了数十亿个理解的金块,GPT-4,就是人类的蝴蝶。」
OpenAI发文称,GPT-4能接受图像和文本输入,输出文本内容,虽然在许多现实场景中的能力不如人类,但在各种专业和学术基准测试中已做到人类水平的表现。GPT-4 实现了以下几个方面的飞跃式提升:强大的识图能力;文字输入限制提升至 2.5 万字;回答准确性显著提高;能够生成歌词、创意文本,实现风格变化。
它强大到什么程度呢?输入一张手绘草图,GPT-4能直接生成最终设计的网页代码。
它以高分通过各种标准化考试:SAT拿下700分,GRE几乎满分,逻辑能力吊打GPT-3.5。
GPT-4在高级推理能力上超越ChatGPT。在律师模拟考试中,ChatGPT背后的GPT-3.5排名在倒数10%左右,而GPT-4考到了前10%左右。GPT-4的长度限制提升到32K tokens,即能处理超过25000个单词的文本,并且可以使用长格式内容创建、扩展对话、文档搜索和分析等。OpenAI还贴心地发布了GPT-4开发者视频,手把手教你生成代码、检查错误信息、报税等。在视频中,OpenAI联合创始人兼总裁Greg Brockman说了句有点扎心的话:“它并不完美,但你也一样。”OpenAI正通过ChatGPT和API发布GPT-4的文本输入功能,图像输入功能暂未开放。ChatGPT plus订阅者可直接获得有使用上限的GPT-4的试用权,4小时内最多只能发布100条信息。开发者也可以申请GPT-4 API,进入候补名单等待通过。
**申请直通门:**http://t.cn/A6ClOHn7随着时间的推移,OpenAI会将其自动更新为推荐的稳定模型(你可以通过调用gpt-4-0314来锁定当前版本,OpenAI将支持到6月14日)。定价是每1k prompt tokens 0.03美元,每1k completion tokens 0.06美元。默认速率限制是每分钟40k tokens和每分钟200个请求。gpt-4的上下文长度为8192个tokens。还提供对32768个上下文(约50页文本)版本gpt-4-32k的有限访问,该版本也将随着时间的推移自动更新(当前版本gpt-4-32k-0314,也将支持到6月14日)。价格是每1k prompt tokens 0.06美元,每1K completion tokens 0.12美元。此外,OpenAI还开源了用于自动评估AI模型性能的框架OpenAI Evals,以便开发者更好的评测模型的优缺点,从而指导团队进一步改进模型。开源地址:github.com/openai/evalsGPT-4 技术报告
本文报告了GPT-4的发展,这是一个大规模的多模态模型,可以接受图像和文本输入并产生文本输出。虽然在许多现实世界的场景中,GPT-4的能力不如人类,但它在各种专业和学术基准上表现出了人类水平的表现,包括通过了模拟的律师考试,其分数约为考生的前10%。GPT-4是一个基于transformer的模型,预训练用于预测文档中的下一个token。训练后的校准过程会提高对事实的衡量和对期望行为的坚持程度。该项目的一个核心组件是开发基础设施和优化方法,这些方法可以在广泛的范围内预测性能。这使我们能够基于不超过GPT-4计算量的1/ 1000的训练模型准确地预测GPT-4性能的某些方面。本技术报告介绍了GPT-4,一个能够处理图像和文本输入并产生文本输出的大型多模态模型。此类模型是一个重要的研究领域,具有广泛的应用前景,如对话系统、文本摘要和机器翻译。因此,近年来,它们一直是人们感兴趣和取得进展的主题[1-28]。开发这样的模型的主要目标之一是提高它们理解和生成自然语言文本的能力,特别是在更复杂和微妙的情况下。为了测试它在这种情况下的能力,在最初为人类设计的各种考试中对GPT-4进行了评估。在这些评估中,它表现得相当好,经常超过绝大多数人类考生。例如,在模拟的律师考试中,GPT-4的分数落在了考生的前10%。这与GPT-3.5形成对比,GPT-3.5得分在最后10%。在一套传统的NLP基准测试中,GPT-4的表现优于之前的大型语言模型和大多数最先进的系统(这些系统通常有基准特定的训练或手工工程)。在MMLU基准29,30上,GPT-4不仅在英语方面以相当大的优势超过现有模型,而且在其他语言方面也表现出强大的性能。在MMLU的翻译变体上,GPT-4在考虑的26种语言中的24种超过了英语的最先进水平。我们将在后面的章节中更详细地讨论这些模型能力结果,以及模型安全性的改进和结果。本报告还讨论了该项目的一个关键挑战,即开发在大范围内表现可预测的深度学习基础设施和优化方法。这使我们能够对GPT-4的预期性能做出预测(基于以类似方式训练的小测试),并在最后的测试中进行测试,以增加我们对训练的信心。尽管GPT-4功能强大,但它与早期的GPT模型有相似的局限性[1,31,32]:它不完全可靠(例如,可能会出现“幻觉”),上下文窗口有限,并且不能从经验中学习。在使用GPT-4输出时应小心,特别是在可靠性很重要的情况下。GPT-4的能力和局限性带来了重大而新颖的安全挑战,我们认为,考虑到潜在的社会影响,仔细研究这些挑战是一个重要的研究领域。本报告包括一个广泛的系统卡(在附录之后),描述了我们预计的关于偏见、虚假信息、过度依赖、隐私、网络安全、扩散等方面的一些风险。它还描述了我们为减轻GPT-4部署带来的潜在危害而采取的干预措施,包括与领域专家进行对抗性测试,以及一个模型辅助的安全通道。本报告重点介绍了GPT-4的功能、局限性和安全性。GPT-4是[33]预训练的transformer风格的模型,可以使用公开可用的数据(如互联网数据)和第三方提供商授权的数据来预测文档中的下一个Token。然后使用来自人类反馈的强化学习(RLHF)[34]对模型进行微调。考虑到大型模型(如GPT-4)的安全影响,本报告没有包含有关架构(包括模型大小)、硬件、训练计算、数据集构造、训练方法或类似内容的进一步细节。我们致力于对我们的技术进行独立审计,并在这个版本附带的系统卡中分享了这一领域的一些初始步骤和想法我们计划向更多的第三方提供进一步的技术细节,他们可以就如何权衡上述竞争和安全考虑与进一步透明的科学价值提供建议
【导读】现在搞AI研究写论文,其中论文里的框架图模型图很是考验你画图的能力,不费一番心思功夫,怎能画出一个入得Reviewer法眼的图,论文也不大好中,很是发愁。好消息来了,elvis介绍了有个ML visual的利器,提供一份103页的PPT模型图素材,你在上面可以直接使用画出你要的机器学习深度学习模型图,再也不用担心画图了!
ML Visuals是一个新的协作项目,通过使用更专业、更吸引人、更充分的图块来帮助机器学习社区改进科学传播。你可以在你的演讲或博客文章中自由使用视觉效果。使用任何视觉效果都不需要经过许可,但是如果你能提供设计师/作者(作者信息可以在幻灯片注释中找到),那就太好了。
地址: https://github.com/dair-ai/ml-visuals
怎么使用ML Visual?
下载这份MLvisual PPT,在上面的模板编辑你要的就行。
要添加您自己的自定义图形,只需添加一个新的幻灯片并重用任何基本的可视组件(请记住请求编辑权限)。您还可以创建自己的幻灯片副本,并自定义您喜欢的内容。我们鼓励作者/设计师在这里添加他们的视觉效果,并允许其他人重用它们。确保包括你的作者信息(在幻灯片的注释部分),这样其他人就可以在其他地方使用你的作品(如博客/演示文稿)。此外,提供一个简短的视觉描述,以帮助用户了解它是关于什么以及他们如何使用它。如果您需要“编辑”权限,请单击上面“仅查看”工具栏下的“请求编辑访问”选项,或者通过ellfae@gmail.com发送电子邮件给我。
从任何一张幻灯片上下载图片都很容易。只需点击文件→下载→(选择你的格式)。
如果你需要帮助定制一个数字或有可能对别人有价值的东西的想法,我们可以帮助。只要在这里打开一个问题,我们将尽我们最大的努力,以赶上视觉。谢谢。
在我们的Slack小组中,有任何关于这个项目的问题都可以问我们。
9月17日,CAAI系列白皮书发布会在南昌成功举办。《大模型技术》该白皮书从语言大模型、多模态大模型、技术生态、产业应用、安全等多个角度,全方位清晰呈现了大模型技术的定义、特点和发展历程,以及目前的主流方法和应用场景,其中包括多项首例行业应用实践,将有效帮助相关人士深入理解大模型技术的原理、方法和应用,提高大模型技术的开发和使用效率和质量,深刻认识大模型技术的影响和责任。
近年来,大模型技术飞速发展,从架构演进统一到训练方式转变,再到模型高效适配,大模型技术引起机器学习范式的一系列重要革新,为通用人工智能发展提供了一种新的手段。由单一模态的语言大模型到语言、视觉、听觉等多模态大模型,大模型技术融合多种模态信息,实现多模态感知与统一表示,也将和知识图谱、搜索引擎、博弈对抗、脑认知等技术融合发展,相互促进,朝着更高智能水平和更加通用性方向发展。 与此同时,大模型技术生态蓬勃发展,开源服务与开放生态成为主流趋势,国内外大模型开放平台、开源模型、框架、工具与公开数据集加速大模型技术演进,框架、工具间软硬件协同优化降低大模型开发和应用成本,推动大模型高效训练与部署。
大模型与教育、科学、金融、传媒艺术等专用领域结合拓广通用大模型能力边界,与实体经济的深度融合成为其赋能行业应用关键,正在“大模型”与“小模型”端云协同并进发展格局下重塑生产力工具,变革信息获取方式,改变人类社会生活和生产方式。
随着大模型的应用,其安全问题日益凸显,因而需关注大模型技术发展的内生及伴生风险,关注大模型安全对齐、安全评估技术,发展大模型安全增强技术,加强大模型安全监管措施,确保其“安全、可靠、可控”。 总之,抓紧推动大模型技术研发,尤其是大模型原始技术创新和大模型软硬件生态建设,强化垂直行业数据基础优势,集中国家资源投入大模型发展,同时关注大模型风险监督,彰显人工智能的技术属性和社会属性。
2023年3月6日,哈工大自然语言处理研究所 ( HIT-NLP, since 1979 ) 师生联合撰写出《ChatGPT调研报告》(84页),对“大模型”技术进行了系统的介绍。该报告原定仅供内部师生参考,但过去2个月中在网上也多有流传。5月4日,研究所决定将该报告公开,以期听取同行意见,并随着“大模型”技术的发展,持续对报告进行更新。
此外,哈工大自然语言处理研究所已经研制出哈工大“活字”对话大模型(通用),目前处于研究所内测阶段。同时,研究所积极研发各行业大模型(专用),欢迎拥有算力、数据、场景、资金优势的企事业单位来信洽商合作。
2022 年11 月30 日,OpenAI 推出全新的对话式通用人工智能工具—— ChatGPT。ChatGPT 表现出了非常惊艳的语言理解、生成、知识推理能力, 它可以很好地理解用户意图,做到有效的多轮沟通,并且回答内容完整、重 点清晰、有概括、有逻辑、有条理。ChatGPT 上线后,5 天活跃用户数高达 100 万,2 个月活跃用户数已达1 个亿,成为历史上增长最快的消费者应用 程序。除了被广大用户追捧外,ChatGPT 还受到了各国政府、企业界、学 术界的广泛关注,使人们看到了解决自然语言处理这一认知智能核心问题的 一条可能的路径,并被认为向通用人工智能迈出了坚实的一步,将对搜索引 擎构成巨大的挑战,甚至将取代很多人的工作,更将颠覆很多领域和行业。 哈工大自然语言处理研究所组织多位老师和同学撰写了本调研报告,从 技术原理、应用场景、未来发展等方面对ChatGPT 进行了尽量详尽的介绍 及总结。
自ChatGPT推出以来,国内学术界和科技企业相继宣布或将推出类似机器人对话模型,有望推动大模型发展。2月7日,百度官宣“文心一言”。2月20日,复旦大学发布了类ChatGPT模型“MOSS”,并面向大众公开邀请内测,国产大模型有望迎来爆发式增长。 需求和政策两方面,合力推动AI产业增长。国内应用层面的需求推动AI产业的加速发展。根据IDC数据预测,2021年中国人工智能软件及应用市场规模为51亿美元,预计2026年将会达到211亿美元。数据、算法、算力是AI发展的驱动力,其中数据是AI发展的基石,中国数据规模增速有望排名全球第一。政策方面,“十四五”规划中提到“瞄准人工智能”,“聚焦人工智能关键算法”,加快推进“基础算法”的“突破与迭代应用”;北京、上海、广州等城市发布相关规划。 头部企业采取“模型+工具平台+生态”三层共建模式,有助于业务的良性循环,也更容易借助长期积累形成竞争壁垒。大模型厂商主要包括百度(文心大模型)、腾讯(HunYuan大模型)、阿里(通义大模型)、商汤、华为(盘古大模型)等企业,也有智源研究院、中科院自动化所等研究机构,同时英伟达等芯片厂商也纷纷入局。大模型增强了AI技术的通用性,助力普惠AI的实现。未来,大模型有望于场景深度融合,配合专业工具和平台支持应用落地,开放的生态来激发创新,形成良性循环。 技术发展有望促进生产效率提升,并进一步创造新的消费和需求,有利于文娱内容和互联网行业。在AIGC和ChatGPT方面,我们建议持续关注技术发展和应用情况,把握技术催化和商业化落地带来的投资机会:1)具备AIGC和ChatGPT的技术探索和应用的公司:百度集团-SW、商汤-W、万兴科技、拓尔思等;2)具有海量内容素材且具有AIGC探索布局的,图片/文字/音乐/视频内容及平台公司腾讯控股,阅文集团、美图公司、昆仑万维、汤姆猫、神州泰岳、视觉中国、中文在线、汉仪股份、天娱数科、风语筑等。
ChatGPT系列报告:
**刷爆的ChatGPT什么算法这么强!台大李宏毅老师国语讲解《ChatGPT (可能)是怎么炼成的 》! **
**深度学习算法发展简述,从DNN到Transformer再到ChatGPT **
最新《ChatGPT》报告, 风口已至,商业化落地加速, 14页pdf
ChatGPT与AIGC深度报告:引领AI新浪潮,AIGC商业化启程
ChatGPT研究框架(2023),72页ppt详解现象级ChatGPT发展历程、原理、技术架构详解和产业未来,
ChatGPT 专题| ChatGPT报告:从ChatGPT到生成式AI:人工智能新范式,重新定义生产力,100页pdf
【芯片算力】▲芯片需求=量↑x价↑,AIGC拉动芯片产业量价齐升。1)量:AIGC带来的全新场景+原场景流量大幅提高;2)价:对高端芯片的需求将拉动芯片均价。ChatGPT的“背后英雄”:芯片,看好国内GPU、CPU、FPGA、AI芯片及光模块产业链。 相关标的:海光信息、景嘉微、龙芯中科、中国长城、安路科技、复旦微电、紫光国微、寒武纪、澜起科技、德科立、天孚通信、中际旭创。 【深度学习框架】深度学习框架是人工智能算法的底层开发工具,是人工智能时代的操作系统,当前深度学习框架发展趋势是趋于大模型训练,对深度学习框架的分布式训练能力提出了要求,国产深度学习框架迎来发展机遇。 相关标的:百度、海天瑞声、商汤科技、微软、谷歌、Meta。 【深度学习大模型】ChatGPT是基于OpenAI公司开发的InstructGPT模型的对话系统,GPT系列模型源自2017年诞生的Transformer模型,此后大模型数量激增,参数量进入千亿时代,国内百度也发布了ERNIE系列模型并有望运用于即将发布的文心一言(ERNIEBot)对话系统,未来国内厂商有望在模型算法领域持续发力。 相关标的:百度、科大讯飞、商汤科技、谷歌、微软。 【应用】ChatGPT火爆全球的背后,可以窥见伴随人工智能技术的发展,数字内容的生产方式向着更加高效迈进。ChatGPT及AIGC未来有望在包括游戏、广告营销、影视、媒体、互联网、娱乐等各领域应用,优化内容生产的效率与创意,加速数实融合与产业升级。 相关标的:百度、腾讯、阿里巴巴、网易、昆仑万维、阅文集团、捷成股份、视觉中国、风语筑、中文在线、三七互娱、吉比特、天娱数科。 【通信】AIGC类产品未来有望成为5G时代新的流量入口,率先受益的有望是AIGC带来的底层基础算力爆发式增长。 相关标的:包括算力调度(运营商)、算力供给(运营商、奥飞数据、数据港)、算力设备(浪潮信息、联想集团、紫光股份、中兴通讯、锐捷网络、天孚通信、光库科技、中际旭创、新易盛)、算力散热(英维克、高澜股份)。
来源:中国信息通信研究院
人工智能技术是释放数字化叠加倍增效应、加快战略新兴产业发展、构筑综合竞争优势的必然选择。纵观全球,国内外人工智能相关不断强化,持续推动释放人工智能红利;以深度学习为代表的人工智能技术飞速发展,新技术开始探索落地应用;工程化能力不断增强,在医疗、制造、自动驾驶等领域的应用持续深入;可信人工智能技术引起社会广泛关注。人工智能治理受到全球高度关注,各国规制进程不断加速,基于可信人工智能的产业实践不断深入。
近日,中国信息通信研究院正式发布《人工智能白皮书(2022年)》,全面回顾了2021年以来全球人工智能在政策、技术、应用和治理等方面的最新动向,重点分析了人工智能所面临的新发展形势及其所处的新发展阶段,致力于全面梳理当前人工智能发展态势,为各界提供参考,共同推动人工智能持续健康发展。
白皮书核心观点
1、人工智能迈入新阶段,将由技术创新、工程实践、可信安全“三维”坐标来定义和牵引。
第一个维度突出创新,围绕着算法和算力方面的创新仍会不断涌现。第二个维度突出工程,工程化能力逐渐成为人工智能大规模赋能千行百业的关键要素。第三个维度突出可信,发展负责任和可信的人工智能成为共识,将抽象的治理原则落实到人工智能全生命流程将成为重点。
2、人工智能技术创新仍是主旋律,新算法不断涌现。
超大规模预训练模型推动技术效果不断提升,继续朝着规模更大、模态更多的方向发展;“生成式人工智能”技术不断成熟,未来听、说、读、写等能力将有机结合;知识计算成为推动人工智能从感知智能向认知智能转变的重要探索;人工智能与科学研究融合不断深入,开始“颠覆”传统研究范式。
3、人工智能工程化聚焦工具体系、开发流程、模型管理全生命流程的高效耦合。
工具体系层面:体系化与开放化成为研发平台技术工具链的发展特点。 开发流程层面:工程化关注人工智能模型开发的生命流程,追求高效且标准化的持续生产、持续交付和持续部署,最终以最佳的模型进入应用层面产生商业价值。 模型管理层面:企业需要建设对模型生命周期的管理机制,对模型的版本历程、性能表现、属性、相关数据、衍生的模型档案等进行标准化的管理运维。
4、人工智能治理迈入软硬法协同和场景规制新阶段。
人工智能治理实质化进程加速推进:各国人工智能治理侧重各有不同,但整体上呈现加速演进态势,即从初期构建以“软法”为导向的社会规范体系,开始推进以“硬法”为保障的风险防控体系。 典型场景化治理加速落地:各国纷纷注意到人工智能应用场景多样化和差异化给治理带来的复杂性,典型场景的治理成为各国的工作重点,特别聚焦于自动驾驶、智慧医疗和人脸识别等领域。
**刷爆的ChatGPT什么算法这么强!台大李宏毅老师国语讲解《ChatGPT (可能)是怎么炼成的 》! **
**深度学习算法发展简述,从DNN到Transformer再到ChatGPT **
最新《ChatGPT》报告, 风口已至,商业化落地加速, 14页pdf
ChatGPT与AIGC深度报告:引领AI新浪潮,AIGC商业化启程
ChatGPT研究框架(2023),72页ppt详解现象级ChatGPT发展历程、原理、技术架构详解和产业未来,
ChatGPT 专题| ChatGPT报告:从ChatGPT到生成式AI:人工智能新范式,重新定义生产力,100页pdf 【ChatGPT系列报告】ChatGPT研究框架,64页pdf 【ChatGPT系列报告】AIGC的技术与应用生态发展进入新阶段,引领内容产业大革命,
【ChatGPT系列报告】AIGC专题二:ChatGPT更懂人类的叙事 AIGC多模态跨模态应用逐渐成熟,市场空间广阔。 广义的AIGC指具备生成创造能力的AI技术,即生成式AI。可以基于训练数据和生成算法模型,自主生成创造新的文本、图像、音乐、视频等内容。2022年被称为AIGC元年,未来兼具大模型和多模态模型的AIGC模型有望成为新的技术平台。据《中国AI数字商业产业展望2021-2025》报告,预测AI数字商业内容的市场规模将从2020年的40亿元,增加到2025年的495亿元。 ChatGPT产品历经多代技术演进,产品与商业模式逐渐成熟。 ChatGPT是文本生成式AI,过去的传统AI偏向于分析能力,主要基于已有内容;现在文本生成式AI基于底层Transformer模型,不断训练数据和迭代生成算法模型,历经GPT-1、GPT-2、GPT-3,模型不断升级,到ChatGPT的GPT3.5模型,已可以自主生成各种形式的内容。近期收费版ChatGPTPlus版本发布,AI商业化序幕逐渐拉开。 AI商业化落地在即,行业算法侧和算力侧投资机会有望超预期。 根据数据显示,ChatGPT总算力消耗约为3640PF-Days,按国内的数据中心算力测算,需要7-8个数据中心才能支持其运行。各模态AI数据训练到应用均需要算法和算力的加持,未来要想大规模应用,算法训练和算力部署均需先行。