项目名称: 基于纳米减阻的球碟转子式微陀螺基础研究

项目编号: No.61474034

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 张海峰

作者单位: 哈尔滨工业大学

项目金额: 76万元

中文摘要: 微机械陀螺由于具有体积小、抗冲击和低成本等优点,在航空、航天、资源勘探等领域导航、制导、控制系统中具有非常广阔的应用前景。当前微机械陀螺的工作原理和加工工艺制约着其性能的提高。利用纳米技术、微纳结合是提高微机械陀螺性能的重要途径之一。本项目提出了一种纳米减阻效应的球碟转子式微陀螺,创新的将纳米减阻技术与微惯性技术相结合,有望实现高性能的微陀螺。通过分析纳米超疏减阻理论,研究超疏效应对转子运动界面的粘附力、摩擦力和热生成的影响,建立纳米减阻效应和微机械陀螺性能之间的相关性。通过建立微陀螺的原理模型,研究新型球碟转子式微陀螺结构设计、微结构的跨尺度制造、稳定驱动和微弱信号检测等关键技术,完成基于纳米减阻效应的微陀螺原理验证。本课题研究成果为提高MEMS陀螺性能奠定理论基础,同时也会对MEMS器件的减阻具有重要的参考价值。

中文关键词: 微机械陀螺;MEMS;纳米减阻;转子

英文摘要: Micromachined gyroscope have some inherent advantages such as small volume, low power consumption, highly resistant to shock and low cost, which has widely applications in aviation, spaceflight, resource exploration. At present,Micromachined gyroscope working principle and manufacturing process hinder the further improvement of MEMS gyroscope performance.It is important method to improve performance of the micromachined gyroscope using nano technology and micro-nano combination. In the project a novel ball-dishing rotor type micromachined gyroscope based on the effects of nano drag reduction is proposed, which is expected to realize high performance MEMS gyroscope. The nano effects of on the adhesion, friction and heat generation of rotor's moving interface are analyzed based on the superoleophobic theory. The dependencies of nano drag reduction and the performance of micromachined gyroscope are explored. The theoretical model of MEMS gyroscope is establised. Using the model these key techniques including structure design,fabrication of trans-dimension scale, steady driving technology and weak signal detection technology are studied. An experiment system is established to realize the verification priciple of MEMS gyroscope. The acquired theoretical achievements will lay a strong foundation for the progress of MEMS gyroscope. It will also provide technical support for the study of the drag reduction fo MEMS devices.

英文关键词: micromachined gyroscope;MEMS;nano drag reduction;rotor

成为VIP会员查看完整内容
0

相关内容

专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
58+阅读 · 2021年4月22日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
127+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2020年11月26日
人机对抗智能技术
专知会员服务
189+阅读 · 2020年5月3日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
提高科研能力!牛津大佬带飞!
CVer
1+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
【无人机】无人机的自主与智能控制
产业智能官
42+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月20日
FenceNet: Fine-grained Footwork Recognition in Fencing
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
58+阅读 · 2021年4月22日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
127+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2020年11月26日
人机对抗智能技术
专知会员服务
189+阅读 · 2020年5月3日
基于深度学习的多标签生成研究进展
专知会员服务
140+阅读 · 2020年4月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月20日
FenceNet: Fine-grained Footwork Recognition in Fencing
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
微信扫码咨询专知VIP会员