项目名称: 机器人肢体仿生减震的磁触变阻尼增效与感控机理研究

项目编号: No.51305435

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 吕宏展

作者单位: 东华大学

项目金额: 25万元

中文摘要: 鉴于磁触变胶随磁场变化瞬间流变的柔性工作性能、高可靠服役稳定性能,适于模拟生物力学功能器件的仿生设计,针对目前机器人肢体大摆幅智能减震存在技术封锁、传统阻尼器件功率密度不足等问题,提出了模仿生物神经功能对外部激励感知预测、快速响应阻尼力把持力度的仿生减震的概念。研究问题有两方面:一是对利于功率密度提高的阻尼动压增效模型的阻尼机理及关键参数进行理论解析,探索楔形间隙、切向速度变化和法向接近引起的动压分布对阻尼增效的影响关系;二是模仿生物神经激励-快速感知、预测响应机制进行模态降维和算法设计,提高系统响应速度。通过建模和理论分析,拟揭示磁触变楔形挤压模型在磁场激励下的仿生阻尼增效机理,及与之关联仿生减震控制机制,项目预期将为机器人肢感智能减震提供一种新途径,研究成果对于仿生减震功能材料设计和智能算法设计奠定了理论基础和实验基础,具有重要科学意义。

中文关键词: 磁触变;仿生减震;阻尼增效;感控;机器人肢感

英文摘要: In view of the magneto-thixotropic gel' instantly rheological flexible force performance and high-reliable service stability under the magnetic field changing with time, which suitable for bionic devices design to imitate biomechanics function. Meanwhile, some problems such as new technology blockade on the robot limbs swing intelligent shock absorption and a low power density with the traditional damping device. The research represents a bionic shock absorption concept that imitates biological neural system function rapid responding to the external stimulus to perception, predict and regulate the holding damping force. The research has two issues, for one thing, study on the damping mechanism of damping dynamic efficiency developing model, which is beneficial to the development of power density, and obtain the analytical solution of key parameters. Explore the influence on damping synergia of wedge-shape gap, tangential velocity variation, and dynamic pressure distribution aroused by approach of displacement along normal direction. For another, study on biological neural excitation-rapid perception, predicting response mechanisms to implement modal dimension reduction and algorithm design and improve system responsiveness. By modeling and theoretical analysis, the study intended to reveal the bionic damping-str

英文关键词: Magneto-thixotropy;bionic shock absorption;damp increasing;sense control;robot limb sense

成为VIP会员查看完整内容
0

相关内容

数字孪生模型构建理论及应用
专知会员服务
230+阅读 · 2022年4月19日
工业人工智能驱动的流程工业智能制造
专知会员服务
105+阅读 · 2022年3月9日
清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
40+阅读 · 2021年5月9日
专知会员服务
49+阅读 · 2021年2月10日
专知会员服务
35+阅读 · 2020年11月26日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
76+阅读 · 2020年6月8日
人机对抗智能技术
专知会员服务
212+阅读 · 2020年5月3日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
魅蓝手机宣布将回归,你有买过吗?
ZEALER订阅号
0+阅读 · 2021年11月5日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
57+阅读 · 2021年5月3日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月21日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
Arxiv
24+阅读 · 2018年10月24日
小贴士
相关主题
相关VIP内容
数字孪生模型构建理论及应用
专知会员服务
230+阅读 · 2022年4月19日
工业人工智能驱动的流程工业智能制造
专知会员服务
105+阅读 · 2022年3月9日
清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
40+阅读 · 2021年5月9日
专知会员服务
49+阅读 · 2021年2月10日
专知会员服务
35+阅读 · 2020年11月26日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
76+阅读 · 2020年6月8日
人机对抗智能技术
专知会员服务
212+阅读 · 2020年5月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
57+阅读 · 2021年5月3日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月21日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
Arxiv
24+阅读 · 2018年10月24日
微信扫码咨询专知VIP会员