项目名称: 基于枝状磁性纳米固定化酶的高梯度磁场酶催化反应器研究

项目编号: No.21476242

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 有机化学

项目作者: 刘春朝

作者单位: 中国科学院过程工程研究所

项目金额: 86万元

中文摘要: 针对纳米固定化酶高效反应与酶回收循环利用的矛盾,以固定化酶的高效连续反应为目的,本课题提出了一个创新反应系统-基于枝状磁性纳米固定化酶的高梯度磁场催化反应器。该方法利用高梯度磁性分离原理,将枝状磁性纳米固定化酶固定在反应柱内金属丝表面,构建一个固定化酶在反应柱内均匀分布、具有一定孔隙率的磁性催化反应器,避免了磁场稳定流化床中受流速限制和纳米催化剂凝聚带来的扩散限制和沟流问题;固定在枝状高分子纳米材料的酶分散在反应器内,而非固体颗粒堆积,具有传质、传热效率高的优点。以漆酶催化降解酚类化合物为模式体系,以创新的枝状磁性纳米固定化酶为催化剂、系统开展高梯度磁场催化反应器的理论分析和实验研究,为绿色酶催化的关键科学问题和技术难题解决提供参考。研究成果不仅可以创立高效经济环境友好的生物转化过程,而且将有力地推动材料科学、生物技术和化学工程等相关学科的交叉融合发展。

中文关键词: 生物催化;生物化工;酶工程

英文摘要: According to contradiction of high reaction of nano immobilized enzyme and enzyme recycling, this project proposes a new integrated innovation system-high gradient magnetic field reactor based on dendritic magnetic nano-immobilized enzyme in order to enhance the efficient continuous reaction of the immobilized enzyme.This method makes use of high gradient magnetic separation principle and the dendritic magnetic nanometer immobilized enzyme fixed on the metal wire surface to construct a uniform distribution of immobilized enzyme in biocatalytic reactor with a certain porosity. This new biocatalysis sytem overcomes the problems of limited liquid flow rate and aggregation of magnetic nanoparticles in magnetically stabilized fluidized bed. The enzyme onto the dendritic magnetic nanoparticles dispersed uniformly in the new biocatalysis reactor with high heat and mass transfer efficiency.With the biocatalytic degradation of phenolic compounds by the immobilized laccase onto the dendritic magnetic nanoparticls, the theoretical analysis and experimental study on the high gradient magnetic reactor will be conducted in order to solve the scientific and technical key problems for biocatalysis with green enzymes.The results from the current project will not only develop efficient and environment-friendly biocatalysis processs but also enhance the cross discipline among material science, biotechnology, chemical engineering and so on.

英文关键词: Biocatalysis;biochemical engineering;enzyme engineering

成为VIP会员查看完整内容
0

相关内容

专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
34+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月21日
专知会员服务
52+阅读 · 2020年12月28日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
23+阅读 · 2018年10月1日
小贴士
相关主题
相关VIP内容
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
34+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月21日
专知会员服务
52+阅读 · 2020年12月28日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员