项目名称: 物化型软岩电化学改性机理与效果研究

项目编号: No.50974093

项目类型: 面上项目

立项/批准年度: 2010

项目学科: 一般工业技术

项目作者: 康天合

作者单位: 太原理工大学

项目金额: 38万元

中文摘要: 针对物化型软岩具有水化膨胀、碎胀扩容和强度降低等物理化学和力学特性,提出了采用电化学方法改变其物质成分和结构,并排除其中的水分来提高其长期稳定性的研究思路。研究以蒙脱石含量为主和高岭石或伊利石含量为主的软岩的矿物成分、微观结构、电化学特性,建立改性的矿物学基础。研究物化型软岩电化学改性中物质成分和结构的变化过程与规律,揭示软岩电化学改性机理。研究软岩块体与软岩粉体在电化学固结改性过程中的电流传递机理、电渗和电泳等电动和电解现象,建立物化型软岩电化学改性的电化学基础。研究软岩块体和粉体的改性效果与外加电场强度、电解液类型、电解液浓度及其作用时间、压力、温度与软岩矿物成分、块体尺寸等因素的相关规律,建立软岩电化学改性的基础理论。为软岩及软岩工程的长期稳定性提供电化学改性的技术基础和工程应用方法,其成果具有重要的理论意义和应用价值。

中文关键词: 物化型软岩;电化学改性;机理;效果;应用方法

英文摘要:

英文关键词: physicochemical soft rock;electrochemical modification;mechanism;effect;applied method

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
42+阅读 · 2021年11月29日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
46+阅读 · 2021年5月24日
专知会员服务
65+阅读 · 2021年5月2日
专知会员服务
114+阅读 · 2021年4月7日
小米在预训练模型的探索与优化
专知会员服务
20+阅读 · 2020年12月31日
深度学习模型终端环境自适应方法研究
专知会员服务
34+阅读 · 2020年11月13日
专知会员服务
29+阅读 · 2020年8月8日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
AI芯片发展现状及前景分析
专知
1+阅读 · 2021年5月2日
流程工业数字孪生关键技术探讨
专知
2+阅读 · 2021年4月7日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
58+阅读 · 2021年5月3日
小贴士
相关主题
相关VIP内容
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
42+阅读 · 2021年11月29日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
46+阅读 · 2021年5月24日
专知会员服务
65+阅读 · 2021年5月2日
专知会员服务
114+阅读 · 2021年4月7日
小米在预训练模型的探索与优化
专知会员服务
20+阅读 · 2020年12月31日
深度学习模型终端环境自适应方法研究
专知会员服务
34+阅读 · 2020年11月13日
专知会员服务
29+阅读 · 2020年8月8日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
相关资讯
AI芯片发展现状及前景分析
专知
1+阅读 · 2021年5月2日
流程工业数字孪生关键技术探讨
专知
2+阅读 · 2021年4月7日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员