项目名称: 强剪切搅拌铸造与ECAE组合制备HA/Mg-Zn-Ca复合材料及其显微组织与性能研究

项目编号: No.51271131

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 刘德宝

作者单位: 天津理工大学

项目金额: 75万元

中文摘要: 强度较低、塑性差特别是生理环境下的腐蚀降解速度过快,是限制镁合金作为可降解医用植入材料临床应用的关键所在。本项目选用生命元素Zn、Ca作为基体合金成分,以纳米羟基磷灰石(HA)为增强体,探索通过新型强剪切熔体搅拌方式制备HA/Mg-Zn-Ca复合材料,提高复合材料铸态下的组织均匀性。再利用等通道转角挤压技术(ECAE)对该铸态复合材料进行大塑性变形加工,进一步细化基体合金晶粒和提高HA颗粒分散的均匀性,以提高材料的强度、塑性和耐蚀性。重点研究熔体强剪切搅拌对铸态复合材料组织均匀化的作用机理;ECAE变形对复合材料显微组织结构的影响,特别是挤压温度及挤压路径对晶粒尺寸与复合相和第二相分布状态的影响;显微组织结构变化对复合材料力学性能及耐蚀性能的影响机理,揭示HA/Mg-Zn-Ca生物复合材料的强韧化机制及组织细化改善耐蚀性的作用机制。本研究对开发可控降解镁合金具有可借鉴的试验与理论指导意义。

中文关键词: 镁基复合材料;剪切搅拌;ECAE;显微组织;性能

英文摘要: Biodegradable magnesium(Mg) and magnesium alloys for biomedical implant materials application have attracted increasing interest recently.The major drawbacks of magnesium alloys in clinical application is that they suffer from a high corrosion rate in the physiological environment and relatively poor strength and toughness.In this study,biocompatible elements such as calcium (Ca) and zinc (Zn) will be chosen as alloying elements of magnesium alloy matrix ,nano hydroxyapatite(HA) as reinforcement.A novel melt shearing device will be used to fabricate the HA/Mg-Zn-Ca composite for improving the microstructure uniformity in the casting state. Subsequently,the equal channel angular extrusion (ECAE) technology will be used to impose the deform severe plastic deformation on the cast HA/Mg-Zn-Ca composite for futher improving the uniformity of nano HA particles and refining grain of matrix alloy,so that the strength, plasticity and corrosion resistance of composite can be improved.The main study emphasis is placed on the following problems : The influence mechanism of intensive melt shearing on the microstructure uniformity during solidification process;Effect of ECAE on the microstructure of composite,especially the effect of extrusion temperture and route on the grain size and distribution state of HA particles an

英文关键词: Magnesium matrix composite;shear mixing;ECAE;microstructure;performance

成为VIP会员查看完整内容
0

相关内容

前沿综述:集体智能与深度学习的交叉进展
专知会员服务
74+阅读 · 2022年2月6日
专知会员服务
22+阅读 · 2021年8月23日
专知会员服务
34+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
98+阅读 · 2021年3月25日
专知会员服务
67+阅读 · 2021年2月17日
【ACL2020-伯克利】预训练Transformer提高分布外鲁棒性
专知会员服务
20+阅读 · 2020年4月14日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
29+阅读 · 2020年3月16日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
前沿综述:集体智能与深度学习的交叉进展
专知会员服务
74+阅读 · 2022年2月6日
专知会员服务
22+阅读 · 2021年8月23日
专知会员服务
34+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
98+阅读 · 2021年3月25日
专知会员服务
67+阅读 · 2021年2月17日
【ACL2020-伯克利】预训练Transformer提高分布外鲁棒性
专知会员服务
20+阅读 · 2020年4月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员