项目名称: 用单分子方法研究G-四链体DNA结构稳定性和解旋机制

项目编号: No.11304252

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 侯锡苗

作者单位: 西北农林科技大学

项目金额: 30万元

中文摘要: 染色体中存在一些富含鸟嘌呤的区域,鸟嘌呤在hoogsteen氢键和一价阳离子作用下堆积成稳定的G-四链体(G4)。人类染色体端粒带有~200nt的GGGTTAGGGTTAGGGTTAGGG重复序列,通过折叠成稳定的G4结构抑制端粒酶工作,来调控端粒延伸。 G4序列也存在于基因启动子区域,通过折叠/去折叠的转换对基因转录表达进行调控。G4结构由于对端粒和基因表达的调控作用,已经成为十分重要的抗癌药物设计靶点。遗憾的是,人们对G4折叠路径,结构热涨落等物理性质还缺乏深入了解,对G4结构解旋机理的研究更是刚刚起步。我们将借助先进的单分子生物物理手段(包括磁镊和单分子荧光共振能量转移)来研究:(1) G4 DNA稳定性的物理学基础,包括折叠路径、高级结构形成机制、序列对结构的影响等;(2) G4 解旋微观机制,包括解旋酶聚集状态、解旋方向、是否存在中间过程、解旋速率、解旋效率、步长、持续解旋距离等

中文关键词: G 四链体;折叠机制;解旋酶;单分子;

英文摘要: In the chromosome, there are some guanine rich regions. These guanines form G-tetrad by the hoogsteen hydrogen bonds, and then fold into G-quadruplex stabilized by monovalent ion such as K+, Na+. At the end of human chromosome telomere, there is a single strand repeated sequence GGGTTAGGGTTAGGGTTAGGG of ~200nt, which is able to fold into G-quadruplex and block the telomerase elongation of telomere DNA. Besides, G4 sequences were also identified to exist inside genome, especially in promoter region. By switching between folded and unfolded states, those sequences are able to regulate gene transcription and expression. However, until now, there is a lack of deep understanding of G-quadruplex physical properties such as folding pathway and structural fluctuations. The investigation of G-quadruplex unwinding mechanism by helicase has just started recently. We are going to use single molecule methods including magnetic tweezers and single molecule FRET to study: (1) the physical basis for G-quadruplex stability: folding pathway, higher structure formation mechanism and the effects of sequence on the structure; (2) G-quadruplex unwinding mechanism, including helicase assembly state, G-quadruplex intermediate state, unwinding velocity, efficiency, step size, processivity. The answers to those questions will provide d

英文关键词: G-quadruplex;folding mechanism;helicase;single molecule;

成为VIP会员查看完整内容
0

相关内容

MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
15+阅读 · 2022年3月18日
专知会员服务
86+阅读 · 2021年10月11日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
35+阅读 · 2021年6月24日
专知会员服务
31+阅读 · 2021年1月9日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
48+阅读 · 2020年12月13日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
MIT设计深度学习框架登Nature封面,预测非编码区DNA突变
专知会员服务
15+阅读 · 2022年3月18日
专知会员服务
86+阅读 · 2021年10月11日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
35+阅读 · 2021年6月24日
专知会员服务
31+阅读 · 2021年1月9日
异质图嵌入综述: 方法、技术、应用和资源
专知会员服务
48+阅读 · 2020年12月13日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员