项目名称: 量子群与有限维代数的表示理论
项目编号: No.11271014
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 司梅
作者单位: 上海交通大学
项目金额: 50万元
中文摘要: 在主持青年科学基金项目期间,我们完全解决了分圆BMW代数的半单性和BMW代数的Morita等价问题,分别刻画了在Hecke代数半单时BMW代数、Ariki-Koike代数半单时分圆BMW代数和退化Hecke代数半单时分圆Nazarov-Wenzl代数的不可约表示的块分类。作为后续研究工作,本项目将研究在其余情况下这几类有限维代数的不可约表示的块分类;解决分圆BMW代数和分圆Nazarov-Wenzl代数的Morita等价问题;拟刻画这些有限维代数的cell模的合成因子、分解数等;通过这些有限维代数与量子群范畴理论之间的联系,尝试给出KLR-Brauer和KLR-BMW代数的定义并研究其表示。我们还将研究几类型量子包络代数的典范基。这些问题都是表示论中的基本问题,其研究结果将有助于深入刻画量子群与有限维代数的表示理论之间的联系。
中文关键词: 代数表示;Hecke代数;Birman-Murakami-Wenzl代数;Brauer代数;典范基
英文摘要: In my project supported by the National Natural Science Foundation of China, we completely solve the problems about the semisimplicity of cyclotomic BMW algebras and Morita equivalence for BMW algebras. We classify the blocks of BMW, cyclotomic BMW and cyclotomic Nazarov-Wenzl algebras when Hecke, Ariki-Koike and degenerate Hecke algebras are semisimple respectively.For further research,this is a proposal on the blocks classification of these finite dimensional associative algebras in other cases. We will also study the Morita equivalence for cyclotomic BMW and cyclotomic Nazarov-Wenzl algebras. We will investigate the composition factor of each cell module and its multiplicity. By establish the interaction between quantum groups and the representation theory of these finite dimensional algebras, we will define KLR-Brauer and KLR-BMW algebras. We will also study the representation theory of KLR-Brauer and KLR-BMW algebras. Finally, we will investigate the canonical bases of quantized enveloping algebras of some types. These problems are fundamental in the representation theory. This research will promote interaction between quantum groups and the representation theory of finite dimensional associative algebras.
英文关键词: representation;Hecke algebra;Birman-Murakami-Wenzl algebra;Brauer algebra;canonical base