这本教科书强调了代数和几何之间的相互作用,以激发线性代数的研究。矩阵和线性变换被认为是同一枚硬币的两面,它们的联系激发了全书的探究。围绕着这个界面,作者提供了一个概念上的理解,数学是进一步的理论和应用的核心。继续学习线性代数的第二门课程,您将会对《高等线性代数与矩阵代数》这本书有更深的了解。

从向量、矩阵和线性变换的介绍开始,这本书的重点是构建这些工具所代表的几何直观。线性系统提供了迄今为止看到的思想的强大应用,并导致子空间、线性独立、基和秩的引入。然后研究集中在矩阵的代数性质,阐明了它们所代表的线性变换的几何性质。行列式、特征值和特征向量都可以从这种几何观点中获益。在整个过程中,“额外主题”部分以广泛的思想和应用扩大了核心内容,从线性规划,到幂迭代和线性递归关系。每个部分都有各种层次的练习,包括许多设计用来用电脑程序解决的练习。

这本书是从线性变换和矩阵本身都是有用的对象的角度写的,但它是两者之间的联系,真正打开线性代数的魔法。有时候,当我们想知道一些关于线性变换的东西时,最简单的方法就是找到一组基然后看对应的矩阵。相反,有许多有趣的矩阵和矩阵运算家族,它们似乎与线性变换无关,但却可以解释一些基无关对象的行为。

线性与矩阵代数导论是线性代数的理想入门证明课程。学生被假定已经完成了一到两门大学水平的数学课程,尽管微积分不是明确的要求。教师将会感激有足够的机会选择符合每个教室需求的主题,并通过WeBWorK提供在线作业集。

成为VIP会员查看完整内容
0
51

相关内容

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 - 题图来自「维基百科」。

我的目标是撰写一本既可以作为教程又能够参考的书。这本书最初是为我在Mount St. Mary大学的编程入门课上的学生准备的大约30页笔记。这些学生中大多数没有编程经验,这促使我改进方法。我省略了很多技术细节,有时我过度简化了事情。其中一些细节在书的后面被补充,尽管其他细节从未被补充。但是这本书并不打算涵盖所有内容,我推荐阅读其他书籍和Python文档来填补这些空白。

这本书第一部分的大部分内容都是基础。前四章非常重要。第五章是有用的,但不是所有的都是关键的。第6章(字符串)应该在第7章(列表)之前完成。第8章包含一些更高级的列表主题。虽然这些内容都很有趣,也很有用,但大部分内容都可以跳过。特别是,那一章涵盖了列表理解,我在书中后面会大量使用。虽然您可以不使用列表理解,但它们提供了一种优雅而有效的做事方式。第9章(while循环)很重要。第10章包含了各种各样的主题,它们都很有用,但是如果需要的话,可以跳过很多。第一部分的最后四章是关于字典、文本文件、函数和面向对象编程的。

第二部分是关于图形的,主要是用Tkinter进行GUI编程。您可以很快地使用Tkinter编写一些很好的程序。例如,第15.7节呈现了一款20行的井字游戏。第二部分的最后一章介绍了一些关于Python图像库的内容。

第三部分包含了许多您可以用Python做的有趣的事情。如果你要围绕这本书组织一个学期的课程,你可能想在第三部分中选择一些主题来复习。这本书的这一部分也可以作为一个参考或作为一个地方,有兴趣和积极的学生学习更多。书中这一部分的所有主题都是我在某一点或另一点上发现有用的东西。虽然这本书是为入门编程课程而设计的,但是对于那些有编程经验想要学习Python的人来说,这本书也很有用。如果你是这些人中的一员,你应该能够轻松地读完前几章。您应该发现,第2部分对GUI编程进行了简明而非肤浅的论述。第三部分包含了关于Python特性的信息,这些特性允许您用很少的代码完成大任务。

成为VIP会员查看完整内容
0
39

W. Keith Nicholson的《线性代数与应用》,传统上出版多年,现在作为开放教育资源和Lyryx的一部分发布与开放文本!支持今天的学生和教师需要更多的教科书,这就是为什么尼克尔森博士选择与Lyryx学习工作。

总的来说,教材的目标是在计算技能,理论和线性代数的应用之间达到平衡。它是线性代数的思想和技术的一个相对先进的介绍,目标是科学和工程学生,他们不仅需要理解如何使用这些方法,而且还需要深入了解为什么他们工作。

它介绍了线性代数的一般思想远早于竞争保持与线性代数相同的严格和简洁的方法。随着许多图表和例子,帮助学生形象化,它也保持与概念的不断介绍。

课程内容有足够的灵活性,可以呈现一个传统的主题介绍,或者允许一个更实用的课程。第1-4章为初学者开设了一学期的课程,而第5-9章为第二学期的课程。这本教科书主要是关于实数线性代数的,在适当的时候提到了复数(在附录A中回顾)。

成为VIP会员查看完整内容
0
45

这本书的书名听起来有点神秘。如果这本书以一种错误的方式呈现了这个主题,人们为什么要读它呢?书中哪些地方做得特别“不对”?

在回答这些问题之前,让我先描述一下本文的目标受众。这本书是“荣誉线性代数”课程的课堂讲稿。这应该是高等数学学生的第一门线性代数课程。它的目标是一个学生,虽然还不是非常熟悉抽象推理,但愿意学习更严格的数学,在“烹饪书风格”的微积分类型课程。除了作为线性代数的第一门课程,它也应该是第一门向学生介绍严格证明、形式定义——简而言之,现代理论(抽象)数学风格的课程。

目标读者解释了基本概念和具体实例的非常具体的混合,它们通常出现在介绍性的线性代数文本中,具有更抽象的定义和高级书籍的典型构造。

https://www.math.brown.edu/streil/papers/LADW/LADW_2017-09-04.pdf

成为VIP会员查看完整内容
0
62

矩阵代数是数据分析和统计理论中最重要的数学领域之一。这本书的第一部分为统计中的应用提出矩阵代数的理论的相关方面。本部分从向量和向量空间的基本概念开始,接着介绍矩阵的基本代数性质,然后描述向量和矩阵在多元演算中的解析性质,最后讨论线性系统解和特征分析中矩阵的运算。这部分基本上是独立的。

本书的第二部分开始考虑在统计中遇到的各种类型的矩阵,例如投影矩阵和正定矩阵,并描述这些矩阵的特殊性质。第二部分也介绍了矩阵理论在统计中的一些应用,包括线性模型、多元分析和随机过程。本部分说明了在本书第一部分中发展的矩阵理论。书的前两个部分可以作为为统计学生的矩阵代数课程的文本,或作为在线性模型或多元统计的各种课程的补充文本。

这本书的第三部分涵盖了数值线性代数。它以数值计算的基础讨论开始,然后描述精确和有效的算法因式分解矩阵,求解线性方程组,并提取特征值和特征向量。虽然这本书没有捆绑到任何特定的软件系统,它描述并给出了使用数字线性代数的现代计算机软件的例子。这部分基本上是自包含的,尽管它假设有一些能力用Fortran或C编程和/或使用R/S-Plus或Matlab的能力。书的这一部分可以作为在统计计算中的一门课程的文本使用,或者作为强调计算的各种课程的补充文本。

这本书包括大量的练习,并在附录中提供了一些解决方案。

James E. Gentle是乔治梅森大学计算统计学教授。他是美国统计协会(ASA)和美国科学促进会的会员。他曾在美国标准局担任过几个国家职务并担任过美国标准局期刊的副主编以及其他统计和计算期刊的副主编。他是随机数生成和蒙特卡罗方法,第二版,和计算统计元素的作者。

成为VIP会员查看完整内容
0
80

线性代数是计算和数据科学家的基本工具之一。这本书“高级线性代数:基础到前沿”(ALAFF)是一个替代传统高级线性代数的计算研究生课程。重点是数值线性代数,研究理论、算法和计算机算法如何相互作用。这些材料通过将文本、视频、练习和编程交织在一起来保持学习者的参与性。

我们在不同的设置中使用了这些材料。这是我们在德克萨斯大学奥斯汀分校名为“数值分析:线性代数”的课程的主要资源,该课程由计算机科学、数学、统计和数据科学、机械工程以及计算科学、工程和数学研究生课程提供。这门课程也通过UT-Austin计算机科学硕士在线课程提供“高级线性代数计算”。最后,它是edX平台上名为“高级线性代数:基础到前沿”的大规模在线开放课程(MOOC)的基础。我们希望其他人可以将ALAFF材料重新用于其他学习设置,无论是整体还是部分。

为了退怕学习者,我们采取了传统的主题的数字线性代数课程,并组织成三部分。正交性,求解线性系统,以及代数特征值问题。

  • 第一部分:正交性探讨了正交性(包括规范的处理、正交空间、奇异值分解(SVD)和解决线性最小二乘问题)。我们从这些主题开始,因为它们是其他课程的先决知识,学生们经常与高等线性代数并行(甚至在此之前)进行学习。

  • 第二部分:求解线性系统集中在所谓的直接和迭代方法,同时也引入了数值稳定性的概念,它量化和限定了在问题的原始陈述中引入的误差和/或在计算机算法中发生的舍入如何影响计算的正确性。

  • 第三部分:代数特征值问题,重点是计算矩阵的特征值和特征向量的理论和实践。这和对角化矩阵是密切相关的。推广了求解特征值问题的实用算法,使其可以用于奇异值分解的计算。本部分和本课程以在现代计算机上执行矩阵计算时如何实现高性能的讨论结束。

成为VIP会员查看完整内容
0
107

当看到这些材料时,一个明显的问题可能会出现:“为什么还要写一本深度学习和自然语言处理的书呢?”一些优秀的论文已经出版,涵盖了深度学习的理论和实践方面,以及它在语言处理中的应用。然而,从我教授自然语言处理课程的经验来看,我认为,尽管这些书的质量非常好,但大多数都不是针对最有可能的读者。本书的目标读者是那些在机器学习和自然语言处理之外的领域有经验的人,并且他们的工作至少部分地依赖于对大量数据,特别是文本数据的自动化分析。这些专家可能包括社会科学家、政治科学家、生物医学科学家,甚至是对机器学习接触有限的计算机科学家和计算语言学家。

现有的深度学习和自然语言处理书籍通常分为两大阵营。第一个阵营专注于深度学习的理论基础。这对前面提到的读者肯定是有用的,因为在使用工具之前应该了解它的理论方面。然而,这些书倾向于假设一个典型的机器学习研究者的背景,因此,我经常看到没有这种背景的学生很快就迷失在这样的材料中。为了缓解这个问题,目前存在的第二种类型的书集中在机器学习从业者;也就是说,如何使用深度学习软件,而很少关注理论方面。我认为,关注实际方面同样是必要的,但还不够。考虑到深度学习框架和库已经变得相当复杂,由于理论上的误解而滥用它们的可能性很高。这个问题在我的课程中也很常见。

因此,本书旨在为自然语言处理的深度学习搭建理论和实践的桥梁。我涵盖了必要的理论背景,并假设读者有最少的机器学习背景。我的目标是让任何上过线性代数和微积分课程的人都能跟上理论材料。为了解决实际问题,本书包含了用于讨论的较简单算法的伪代码,以及用于较复杂体系结构的实际Python代码。任何上过Python编程课程的人都应该能够理解这些代码。读完这本书后,我希望读者能有必要的基础,立即开始构建真实世界的、实用的自然语言处理系统,并通过阅读有关这些主题的研究出版物来扩展他们的知识。

http://clulab.cs.arizona.edu/gentlenlp/gentlenlp-book-05172020.pdf

成为VIP会员查看完整内容
0
72

有很多关于傅里叶变换的书; 然而,很少有面向多学科读者的。为工程师写一本关于代数概念的书是一个真正的挑战,即使不是太难的事,也要比写一本关于理论应用的代数书更有挑战性。这就是本书试图面对的挑战。因此,每个读者都能够创建一个“按菜单”的程序,并从语句或计算机程序中提取特定元素,以建立他们在该领域的知识,或将其运用于更具体的问题。

本文叙述是非常详细的。读者可能偶尔需要一些关于有限组的高级概念,以及对组行为的熟悉程度。我强调了那些重要的定义和符号。例如,从多个角度(交换群、信号处理、非交换群)研究卷积的概念,每次都要放在它的背景知识中。因此,不同的段落,虽然遵循一个逻辑递进,有一个真正的统一,但可以根据自己需要选取阅读。

第一章用群论的语言来解释主要概念,并解释后面将用到的符号。第二章将所得结果应用于各种问题,并首次接触快速算法(例如Walsh 变换)。第三章对离散傅里叶变换进行了阐述。第四章介绍了离散傅里叶变换的各种应用,并构成了对前一章的必要补充,以充分理解所涉及的机制以及在实际情况中使用。第五章围绕傅里叶变换提出了更多新颖的思想和算法,产生了大量的应用。第六章需要一些更高级的知识,特别是对有限场理论的一些熟悉。它研究了有限域中的值变换,并给出了在校正码中的应用。最后两章(最困难的一章),具有更多的代数性质,并建议推广已经在有限非交换群的情况下进行的构造。第七章揭示了线性表示的理论。第八章和最后一章将这一理论应用于理论(群的简洁性研究)和实际(光谱分析)领域。

https://mathematical-tours.github.io/daft/

成为VIP会员查看完整内容
0
61

凸优化研究在凸集上最小化凸函数的问题。凸性,连同它的许多含义,已经被用来为许多类凸程序提出有效的算法。因此,凸优化已经广泛地影响了科学和工程的几个学科。

过去几年,凸优化算法彻底改变了离散和连续优化问题的算法设计。对于图的最大流、二部图的最大匹配和子模函数最小化等问题,已知的最快算法涉及到对凸优化算法的基本和重要使用,如梯度下降、镜像下降、内点方法和切割平面方法。令人惊讶的是,凸优化算法也被用于设计离散对象(如拟阵)的计数问题。同时,凸优化算法已经成为许多现代机器学习应用的中心。由于输入实例越来越大、越来越复杂,对凸优化算法的需求也极大地推动了凸优化技术本身的发展。

这本书的目的是使读者能够获得对凸优化算法的深入理解。重点是从第一性原理推导出凸优化的关键算法,并根据输入长度建立精确的运行时间界限。由于这些方法的广泛适用性,一本书不可能向所有人展示这些方法的应用。这本书展示了各种离散优化和计数问题的快速算法的应用。本书中所选的应用程序的目的是为了说明连续优化和离散优化之间的一个相当令人惊讶的桥梁。

目标受众包括高级本科生、研究生和理论计算机科学、离散优化和机器学习方面的研究人员。

https://convex-optimization.github.io/

第一章-连续优化和离散优化的衔接

我们提出了连续优化和离散优化之间的相互作用。最大流问题是一个激励人心的例子。我们也追溯了线性规划的历史——从椭球法到现代内点法。最后介绍了椭球法在求解最大熵问题等一般凸规划问题上的一些最新成果。

第二章 预备知识

我们复习这本书所需的数学基础知识。这些内容包括多元微积分、线性代数、几何、拓扑、动力系统和图论中的一些标准概念和事实。

第三章-凸性

我们引入凸集,凸性的概念,并展示了伴随凸性而来的能力:凸集具有分离超平面,子梯度存在,凸函数的局部最优解是全局最优解。

第四章-凸优化与效率

我们提出了凸优化的概念,并正式讨论了它意味着什么,有效地解决一个凸程序作为一个函数的表示长度的输入和期望的精度。

第五章-对偶性与最优性

我们引入拉格朗日对偶性的概念,并证明在一个称为Slater条件的温和条件下,强拉格朗日对偶性是成立的。随后,我们介绍了拉格朗日对偶和优化方法中经常出现的Legendre-Fenchel对偶。最后,给出了Kahn-Karush-Tucker(KKT)最优性条件及其与强对偶性的关系。

第六章-梯度下降

我们首先介绍梯度下降法,并说明如何将其视为最陡下降。然后,我们证明了梯度下降法在函数的梯度是连续的情况下具有收敛时间界。最后,我们使用梯度下降法提出了一个快速算法的离散优化问题:计算最大流量无向图。

第七章-镜像下降和乘法权值更新

我们推出我们的凸优化的第二个算法-称为镜面下降法-通过正则化观点。首先,提出了基于概率单纯形的凸函数优化算法。随后,我们展示了如何推广它,重要的是,从它推导出乘法权值更新(MWU)方法。然后利用后一种算法开发了一个快速的近似算法来解决图上的二部图匹配问题。

第八章-加速梯度下降

提出了Nesterov的加速梯度下降算法。该算法可以看作是前面介绍的梯度下降法和镜像下降法的混合。我们还提出了一个应用加速梯度法求解线性方程组。

第九章-牛顿法

IWe开始了设计凸优化算法的旅程,其迭代次数与误差成对数关系。作为第一步,我们推导并分析了经典的牛顿方法,这是一个二阶方法的例子。我们认为牛顿方法可以被看作是黎曼流形上的最速下降,然后对其收敛性进行仿射不变分析。

第十章 线性规划的内点法

利用牛顿法及其收敛性,推导出一个线性规划的多项式时间算法。该算法的关键是利用障碍函数的概念和相应的中心路径,将有约束优化问题简化为无约束优化问题。

第十一章-内点法的变种与自洽

给出了线性规划中路径遵循IPM的各种推广。作为应用,我们推导了求解s-t最小代价流问题的快速算法。随后,我们引入了自一致性的概念,并给出了多边形和更一般凸集的障碍函数的概述。

第十二章 线性规划的椭球法

介绍了凸优化的一类切割平面方法,并分析了一种特殊情况,即椭球体法。然后,我们展示了如何使用这个椭球方法来解决线性程序超过0-1多边形时,我们只能访问一个分离oracle的多边形。

第十三章-凸优化的椭球法

我们展示了如何适应椭球法求解一般凸程序。作为应用,我们提出了子模函数最小化的多项式时间算法和计算组合多边形上的最大熵分布的多项式时间算法。

成为VIP会员查看完整内容
0
127

本书建立在基本的Python教程的基础上,解释了许多没有被常规覆盖的Python语言特性:从通过利用入口点作为微服务扮演双重角色的可重用控制台脚本,到使用asyncio高效地整理大量来源的数据。通过这种方式,它涵盖了基于类型提示的linting、低开销测试和其他自动质量检查,以演示一个健壮的实际开发过程。

Python的一些功能强大的方面通常用一些设计的示例来描述,这些示例仅作为一个独立示例来解释该特性。通过遵循从原型到生产质量的真实应用程序示例的设计和构建,您不仅将看到各种功能是如何工作的,而且还将看到它们如何作为更大的系统设计过程的一部分进行集成。此外,您还将受益于一些有用的附加说明和库建议,它们是Python会议上问答会议的主要内容,也是讨论现代Python最佳实践和技术的主要内容,以便更好地生成易于维护的清晰代码。

高级Python开发是为已经能用Python编写简单程序的开发人员准备的,这些开发人员希望了解什么时候使用新的和高级语言特性是合适的,并且能够以一种自信的方式这样做。它对于希望升级到更高级别的开发人员和迄今为止使用过较老版本Python的非常有经验的开发人员特别有用。

你将学习

  • 理解异步编程
  • 检查开发插件架构
  • 使用类型注释
  • 回顾测试技术
  • 探索打包和依赖项管理

这本书是给谁的 -已经有Python经验的中高级开发人员。

成为VIP会员查看完整内容
0
147

斯坦福大学Stephen Boyd教授与加州大学Lieven Vandenberghe教授合著的应用线性代数导论:向量、矩阵和最小二乘法《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares》在2018年由剑桥大学出版社发行,开源书包含19章,473页pdf,这本书的目的是提供一个介绍向量,矩阵,最小二乘方法,应用线性代数的基本主题。目标是让学生通俗易懂,入门学习。让学习者了解在包括数据拟合、机器学习和人工智能,断层、导航、图像处理、金融、和自动控制系统的应用。是一本不可多得好教材。​

Stephen P. Boyd是斯坦福大学电子工程Samsung 教授,信息系统实验室电子工程教授,斯坦福大学电子工程系系主任。他在管理科学与工程系和计算机科学系任职,是计算与数学工程研究所的成员。他目前的研究重点是凸优化在控制、信号处理、机器学习和金融方面的应用。 https://web.stanford.edu/~boyd/

Lieven Vandenberghe,美国加州大学洛杉矶分校电子与计算机工程系和数学系教授

这本书的目的是提供一个介绍向量,矩阵,最小二乘方法,应用线性代数的基本主题。我们的目标是让很少或根本没有接触过线性代数的学生快速学习,以及对如何使用它们在许多应用程序中, 包括数据拟合、机器学习和人工智能, 断层、导航、图像处理、金融、和自动控制系统。

读者所需要的背景知识是熟悉基本的数学符号。我们只在少数地方使用微积分,但它并不是一个关键的角色,也不是一个严格的先决条件。虽然这本书涵盖了许多传统上作为概率和统计的一部分来教授的话题,比如如何将数学模型与数据相匹配,但它并不需要概率和统计方面的知识或背景。

这本书涉及的数学比应用线性代数的典型文本还少。我们只使用线性代数中的一个理论概念,线性无关,和一个计算工具,QR分解;我们处理大多数应用程序的方法只依赖于一种方法,即最小二乘(或某种扩展)。从这个意义上说,我们的目标是知识经济:仅用一些基本的数学思想、概念和方法,我们就涵盖了许多应用。然而,我们所提供的数学是完整的,因为我们仔细地证明了每一个数学命题。然而,与大多数介绍性的线性代数文本不同,我们描述了许多应用程序,包括一些通常被认为是高级主题的应用程序,如文档分类、控制、状态估计和组合优化。

这本书分为三部分。第一部分向读者介绍向量,以及各种向量运算和函数,如加法、内积、距离和角度。我们还将描述如何在应用程序中使用向量来表示文档中的字数、时间序列、病人的属性、产品的销售、音轨、图像或投资组合。第二部分对矩阵也做了同样的处理,最终以矩阵的逆和求解线性方程的方法结束。第三部分,关于最小二乘,是回报,至少在应用方面。我们展示了近似求解一组超定方程的简单而自然的思想,以及对这一基本思想的一些扩展,可以用来解决许多实际问题。

成为VIP会员查看完整内容
0
172
小贴士
相关VIP内容
专知会员服务
39+阅读 · 7月10日
专知会员服务
45+阅读 · 6月10日
专知会员服务
62+阅读 · 2月28日
专知会员服务
72+阅读 · 2020年11月7日
专知会员服务
61+阅读 · 2020年11月2日
专知会员服务
127+阅读 · 2020年9月1日
专知会员服务
147+阅读 · 2020年7月31日
相关论文
Omar Vidal Pino,Erickson Rangel Nascimento,Mario Fernando Montenegro Campos
0+阅读 · 7月7日
Bahram Mohammadi,Mahmood Fathy,Mohammad Sabokrou
13+阅读 · 3月2日
Learning to Estimate Pose and Shape of Hand-Held Objects from RGB Images
Mia Kokic,Danica Kragic,Jeannette Bohg
4+阅读 · 2019年3月8日
Deep Node Ranking: an Algorithm for Structural Network Embedding and End-to-End Classification
Blaž Škrlj,Jan Kralj,Janez Konc,Marko Robnik-Šikonja,Nada Lavrač
4+阅读 · 2019年2月11日
q-Space Novelty Detection with Variational Autoencoders
Aleksei Vasilev,Vladimir Golkov,Marc Meissner,Ilona Lipp,Eleonora Sgarlata,Valentina Tomassini,Derek K. Jones,Daniel Cremers
3+阅读 · 2018年10月25日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Rohit Girdhar,Georgia Gkioxari,Lorenzo Torresani,Manohar Paluri,Du Tran
5+阅读 · 2018年5月2日
Jiankang Deng,Jia Guo,Stefanos Zafeiriou
5+阅读 · 2018年1月23日
Top