项目名称: 超声场作用下Sn/Al界面非晶层原位生成机理研究

项目编号: No.51505392

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 机械、仪表工业

项目作者: 李远星

作者单位: 西南交通大学

项目金额: 20万元

中文摘要: 由于相图中互溶度低的固有限制,Sn/Al等体系的界面结合极弱且接头耐腐蚀性能差,这些都极大的限制了智能材料在电子行业中的封装及应用。本研究针对此问题提出了超声场作用下Sn/Al界面非晶层原位生成技术。主要思想是利用超声场的空化作用产生的空化泡瞬间崩溃的高温带来的高冷却速度(6.6×10^8K/s),在界面层原位生成一层含Al量极高(远大于溶解度)的非晶层,从而在本质上提高Sn/Al界面连接强度。主要研究超声振动条件、元素成分条件等在Sn/Al界面非晶层生成过程中的作用及其对非晶层成分及结构的影响规律,进而揭示超声场作用下非晶原位生成的机理。基于此研究Sn/Al非晶层增强接头的断裂行为及强化机制。同时,探索超声场作用下Sn/Al界面非晶层原位生成技术,创造性的解决了Sn-Al等由互溶度低导致的界面弱连接问题,从而大幅度提高接头力学性能和耐腐蚀性能,并实现铝合金的高强度的低温连接。

中文关键词: 铝合金钎焊;超声波钎焊;非晶;界面结构;低温钎焊

英文摘要: Due to the low solution of Al in Sn of Al-Sn phase graph, the interfacial strength between Al and Sn is low, which limit the application of “smart materials” in electronics industry. Technology of amorphous layer in situ formation at the interface between Sn and Al is presented to solve the problem. The cooling speed of ultrasonic vocations is about 6.6×10^8K/s, which is more than the amorphous formation cooling rate (10^5 K/s). Based on this fact, amorphous layer is supposed to form in situ at the interface, which will improve the strength of the joints. And the mechanism of the amorphous layer formed in situ at the interface is studied by investigation of the roles the ultrasound and Zn elements played. And relationship between the microstructure of the amorphous layer and the ultrasound and Zn elements will be investigated by TEM observation. And the fracture behavior and the strengthen mechanism of the joint is also studied. The exploration of technology of amorphous layer in situ formation at the interface between Sn and Al will solve the weak joining of the interface of Sn/Al, which can improve the strength and the corrosion resistance of the joint significantly. And technology will get a sound joint of the aluminum alloys with low soldering temperature.

英文关键词: aluminum soldering;ultrasonic soldering;amorphous;interfacial structure;low temperature joinning

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
64+阅读 · 2020年12月24日
专知会员服务
102+阅读 · 2020年11月27日
【ACL2020-Google】逆向工程配置的神经文本生成模型
专知会员服务
16+阅读 · 2020年4月20日
你会信任哪些平台的评分评价?
ZEALER订阅号
0+阅读 · 2022年3月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关主题
相关VIP内容
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
64+阅读 · 2020年12月24日
专知会员服务
102+阅读 · 2020年11月27日
【ACL2020-Google】逆向工程配置的神经文本生成模型
专知会员服务
16+阅读 · 2020年4月20日
相关资讯
你会信任哪些平台的评分评价?
ZEALER订阅号
0+阅读 · 2022年3月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2018年2月17日
微信扫码咨询专知VIP会员