项目名称: 基于行波电帘的太阳能电池板微尘自清洁机理研究

项目编号: No.51205431

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 周传德

作者单位: 重庆科技学院

项目金额: 25万元

中文摘要: 微尘累积会导致太阳能电池板发电效率大幅下降甚至损坏。项目以微尘在行波电帘空间下的运动规律和可控操纵理论及行波电帘电极参数最优化为目标开展应用基础研究,以地球微尘电学和力学特性着手,掌握微尘颗粒分布,带电或高压电场中电离和极化,以及微尘在电池板表面附着力等特性;采用边界元及离散元方法研究带电和不带电微尘在行波电帘空间受静电力、介电泳力、重力、阻力及粒子间电荷力等多力作用下的力学和运动学模型,揭示地球大气环境下微尘在行波电帘空间的运动规律及实现定向运动的控制理论;进而采用数值模拟仿真和正交实验研究行波电帘的电学参数(波形、电压和频率)、机械参数(电极宽度、电极间距、薄膜厚度)与除尘效率的关系,建立行波电帘除尘效率的数学模型和电帘电极参数多变量函数最优化方法。为建立一种适用于我国西部气候条件下的大规模电池板阵列和其它光电及仪器系统的自清洁方法提供理论和工艺支撑。

中文关键词: 微尘;行波电帘;运动模式;自清洁;

英文摘要: Accumulation of dust can cause substantially decreased efficiency and even damage to solar cells. Previous research has suggusted that one feasible method of dust removal is high-voltage wave electric curtain.And our team's work has also confirm it. This project aims to investigate the movement pattern of dust particles under traveling-wave electric curtain and subsequent optimisation of the parameters of wave electric curtain. Firstly, the properties of the earth dust particles will be studied, includding particle size distribution, charges, ionization and polarization, Especially the electronic characteristics that is basis to study the movement rule of dust particles.Secondly,distinct element method and boundary element method will be employed to build the forced and moving model of dust particles, charged or uncharged, under the forces of electrostatic, dielectric electrophoresis, resistance and charges. As a result, we will reveal the movement pattern of the dust particles in the earth's atmosphere environment and corresponding removal mechanism. Furthermore, numerical simulation and orthogonal experiment will be conducted to investigate the relationship between the dust removal efficiency and the parameters of electric curtain, including electrical power parameters (waveform, voltage and frequency), mech

英文关键词: Particulate;Travelling wave electric curtain;Motor pattern;Self-cleaning;

成为VIP会员查看完整内容
0

相关内容

《现代战争的制胜机理》美国国防大学
专知会员服务
116+阅读 · 2022年5月10日
《利用人工智能加速能源转型》报告
专知会员服务
75+阅读 · 2022年2月23日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
逆优化: 理论与应用
专知会员服务
35+阅读 · 2021年9月13日
专知会员服务
21+阅读 · 2021年6月26日
2021太阳电池中国最高转换效率发布
光伏专委会CPVS
0+阅读 · 2022年4月21日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年5月10日
Arxiv
0+阅读 · 2022年5月8日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
72+阅读 · 2018年12月22日
Arxiv
15+阅读 · 2018年2月4日
小贴士
相关主题
相关VIP内容
《现代战争的制胜机理》美国国防大学
专知会员服务
116+阅读 · 2022年5月10日
《利用人工智能加速能源转型》报告
专知会员服务
75+阅读 · 2022年2月23日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
逆优化: 理论与应用
专知会员服务
35+阅读 · 2021年9月13日
专知会员服务
21+阅读 · 2021年6月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员