项目名称: 铁系纳米材料的微结构和电磁输运机理研究

项目编号: No.11274033

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 陈子瑜

作者单位: 北京航空航天大学

项目金额: 86万元

中文摘要: 研究表明,铁系纳米材料的颗粒边界、微结构,尺度和维度的减小对其电磁输运性能影响显著。与输运性质相关联的特征物理长度通常处于纳米量级,当材料体系尺寸与相关特征物理长度相近时,则呈现出新颖的电学和磁学行为。该领域近年来受到广泛关注,而电磁输运的物理机制有待进一步研究。本项目利用物理和化学方法制备尺寸和形状可控的铁系(如FePt,CoPt,Fe3O4等)纳米材料,并通过材料设计、可控合成构建复杂结构的铁系纳米组装体系;寻找纳米尺度样品的微结构和电磁性能区别于简单纳米粒子体系和块体材料的特征;系统研究成分、尺度、维度、颗粒边界、晶粒织构、温度、电场和磁场对其电磁输运性能的影响,探索铁系纳米材料的电磁输运规律,结合物理模型的构建与验证揭示其内禀电磁输运机制。研究结果将进一步丰富低维材料体系的输运理论,为铁系纳米材料的可控制备和应用提供依据。

中文关键词: 铁系材料;纳米材料;电磁性质;输运机理;

英文摘要: Studies show that electromagnetic transport properties of ferric nanomaterials are significantly affected by grain boundaries, microstructures and decreased scales or dimensions. When system size of the material is close to characteristic length related to transport properties, special electrical and magnetic behaviors usually appear, which attracts much attention recently. However, further research is still required on the physical mechanism of such electromagnetic transport. In this project, ferric nanomaterials with controlled size and shape, such as FePt, CoPt, Fe2O3, are prepared by physical and chemical methods, and complex nanostructure assembling systems are constructed through material design and controllable synthesis. Unique features of microstructure and electromagnetic properties under this nanoscale compared with simple particle system or traditional block materials will be investigated, and the effect of preparation, composition, scale, dimension, grain boundary, microstructure, temperature, electric field and magnetic field on the electromagnetic transport properties will be systematically studied. The above experimental exploration, combining with physical model verification, will reveal the intrinsic electromagnetic transport mechanism of these ferric nanomaterials. Related research results can

英文关键词: Ferric materials;Nano-materials;Electromagnetic properties;Transport mechanism;

成为VIP会员查看完整内容
0

相关内容

【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
53+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
38+阅读 · 2021年2月8日
少即是多?非参数语言模型,68页ppt
专知会员服务
20+阅读 · 2020年11月22日
专知会员服务
28+阅读 · 2020年8月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
小贴士
相关主题
相关VIP内容
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
53+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
38+阅读 · 2021年2月8日
少即是多?非参数语言模型,68页ppt
专知会员服务
20+阅读 · 2020年11月22日
专知会员服务
28+阅读 · 2020年8月8日
相关资讯
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员