项目名称: 受限微空间内金属有机分子组装体的制备和发光性能研究

项目编号: No.51273030

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 陶胜洋

作者单位: 大连理工大学

项目金额: 80万元

中文摘要: 具有多组元,多功能集成的自组织体系广泛的存在于自然界中,然而,利用化学合成手段来构建这类材料,并赋予其预期的功能,是一项富有挑战性的课题。基于已取得的初步研究结果,我们提出将双亲金属有机分子自组装体与纳米尺度的受限微空间相结合,构建具有光致发光性能的新型功能材料的设想。即设计合成含有芳香族配位基团的双亲分子,将其与无机硅源共组装,得到束缚于氧化硅纳米孔道内的组装体系;而后通过配位作用在孔道内形成金属有机分子组装体。利用组装体的发光性质以及受限空间内的荧光共振能量转移过程,制备具有不同发射波长和传感特性的荧光材料。通过该课题的实施,一方面可使我们探索出一套简单有效的方法来构建一系列发光功能材料,发展成为一种制备新功能材料的普适方法;另一方面,这一结构体系的建立也将有利于对受限空间内分子的组装行为,分子间的相互作用与能量传递等重要的基础性问题进行研究,为其他先进材料的制备提供有价值的借鉴。

中文关键词: 自组装;超分子;受限空间;功能材料;发光

英文摘要: The self-assembly systems which have multiple component and functions widely exist in the nature. However, building such system and endowing it special functions via chemical method is a very challenging subject. Based on our preliminary work, herein, we propose that preparing a novel functional fluorescent material by combining organic molecules self-assembly and nano-scale microreactor. First, we would design various amphiphiles which contain aromatic coordinating groups. Then, the amphiphiles will be co-assembled with inorganic silicate source to get a hybrid material which is constructed by the nanochannel and micelle confined in it. Last, metal ions will be introduced into the self-assembly system to form a metal-organic self-assembly hybrid material. Due to the fluorescent property of amphiphiles and the fluorescence resonance energy transfer process, we could get series fluorescent materials with different emission wavelength and sensing properties. Through the operating of this project, one hand we could develop a facial method prepare fluorescent materials and even other functional materials; the other hand, it is beneficial to explore some important basic problems, such as the self-assembly process in confined space, interactions and energy transfer between molecules and so on. It also will provide val

英文关键词: self-assembly;supramolecular;confined-space;functional materials;fluorescence

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
把DNA换成RNA,有望创造强大、可持续的生物计算机
大数据文摘
0+阅读 · 2022年3月31日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2020年11月15日
Arxiv
10+阅读 · 2018年3月23日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年3月9日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员