项目名称: 高温氮化反应烧成高强度氮化物结合氧化物-碳系材料的原理及性能研究

项目编号: No.51274156

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 矿业工程

项目作者: 邓承继

作者单位: 武汉科技大学

项目金额: 80万元

中文摘要: 项目拟研究氮化物结合氧化物-碳系复合耐火材料反应烧成制备的新途径,即通过对氧化物-石墨/碳素材料结合相的设计,利用高温反应氮化烧结技术,制备适合冶金工业需要的高强度、优异抗渣性能、对钢水污染小、热震稳定性好、抗氧化能力强的氧化物-碳复合材料,有效地解决现有含碳材料无化学结合导致的强度不高、易污染钢水等问题,项目具有重要的理论及应用意义。项目将设计和研究氮化烧成氧化物-石墨/碳素材料之间制备氮化物结合相的制备机理、参数及其规律性,构建高温氮化烧成镁碳系统中氮化硅相和铝碳系统氮化硅/Sialon结合相的反应生成及烧结的动力学模型,探明合成反应的控制机制,对高温氮化烧成复合材料的物相组成和显微结构进行深入研究,建立氮化物结合相在氧化物-石墨/碳素材料之间化学结合的机制,探明制备过程与显微结构之间的主要关系,表征项目制备的氮化物结合氧化物-碳复合耐火材料的性能,为其在洁净钢生产使用提供理论基础。

中文关键词: 高温氮化原位反应;化学结合;Si3N4-MgO-C材料;Sialon-Al2O3-C材料;Sialon/AlON-MgAl2O4-C材料

英文摘要: The novel preparation method of nitride reaction-bonded oxide-carbon system refractory composites would be studied in this proposal. The oxide-graphite/carbon refractory composites with high strength, excellent slag resistant, less pollution for molten steel, good thermal shock assistant and antioxidant ability are prepared by using nitriding reaction and sintering at high temperatures according to the design of combination phase, which could solve many problems existing in the carbon-containing refractory without chemical bond, such as low strength and more pollution for molten steel. So the research of the proposal has important theoretical and applied significances. The preparation mechanism, parameters and regularity of nitride combination phase of nitride reaction-bonded oxide-graphite/carbon system will be designed and analyzed. The dynamic model of reaction and sintering of silicon nitride phase in magnesia-carbon system and the combination phase between silicon nitride or sialon in alumina-carbon system will be established. The control mechanism of synthesis reaction will be clarified. The phase composition and microstructure of composite materials made by nitrided and sintered at high temperatures will be intensively studied. The chemical combination mechanism between oxide and graphite/carbon will be e

英文关键词: In situ nitriding reaction at high temperatures;Chemical binding;Si3N4-MgO-C;Sialon-Al2O3-C;Sialon/AlON-MgAl2O4

成为VIP会员查看完整内容
0

相关内容

【Chen Guanyi博士论文】汉语名词短语的计算生成,282页pdf
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
31+阅读 · 2022年3月17日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
16+阅读 · 2021年11月18日
专知会员服务
22+阅读 · 2021年8月23日
专知会员服务
34+阅读 · 2021年5月7日
专知会员服务
114+阅读 · 2021年4月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
2+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2021年6月15日
小贴士
相关主题
相关VIP内容
相关资讯
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
2+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员