项目名称: CdS和CdSe量子点协同敏化TiO2纳米管阵列太阳能电池的制备与光电特性

项目编号: No.51302118

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 赵文燕

作者单位: 景德镇陶瓷学院

项目金额: 25万元

中文摘要: 项目拟围绕无机复合半导体纳米材料体异质结太阳能电池的研究,首先采用磁控溅射在透明导电玻璃(FTO)基体上生长Ti薄膜,然后通过阳极氧化在FTO基体上可控生长一维TiO2纳米管阵列,进而采用窄带隙的II-VI族复合量子点(CdS和CdSe)对宽带系的TiO2纳米管进行敏化处理,拓宽其光谱响应范围,增强光生电荷分离效率并有效抑制电子-空穴对的复合,最终实现高效TiO2纳米管阵列太阳能电池的制备。相关工作将深入揭示量子点敏化剂、阵列结构等与电池综合性能间的相互关系,实现无机半导体材料间的功能互补与优势协同,阐明光吸收、体异质结光生电荷的分离、输运、收集等光电转换机理,有望实现可见光的高效吸收,获得具有高效光电转换效率的新颖TiO2纳米管阵列太阳能电池,为其潜在应用提供一定的科学数据和理论指导。

中文关键词: 量子点敏化;TiO2纳米管;太阳能电池;光电性质;

英文摘要: The project is planned to study the bulk heterojunction solar cell of inorganic compound conductor nano-materials. First, the Ti thin film will be prepared on the substrate of the transparent conductive glass (FTO) by magnetron sputtering. Followed, one-dimensional TiO2 nanotube array will be grown on FTO substrate via anodic oxidation, and then the TiO2 nanotubes will be treated by II-VI narrow band gap composite quantum dot (CdS and CdSe). The purpose is broader spectrum application range, enhance charges separation efficiency and inhibit the recombination of electron-hole pairs. Finally, the effective TiO2 nanotube arrays solar cell will be prepared. The related work will reveal the the relationship between quantum dot sensitizers, array structure and the overall performance of the solar cells, achieve function complements and advantages collaborative between inorganic semiconductor materials. Then, it will be elucidating the photoelectric conversion mechanism about the charge absorption, separation, transport. It is expected to realize the efficient absorption of visible light, obtain the novel TiO2 nanotube arrays solar cells with high photoelectric conversion efficiency. This study will provide scientific data and the theoretical guidance for its potential application.

英文关键词: Quantum dot sensitized;TiO2 nanotube;Solar cell;Photoelectric properties;

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
专知会员服务
41+阅读 · 2021年9月7日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
专知会员服务
31+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
14+阅读 · 2020年2月6日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员