项目名称: 基于弱化金属-氧键合机制设计可见光响应的氮掺杂金属氧化物光催化材料

项目编号: No.51202255

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 尹利长

作者单位: 中国科学院金属研究所

项目金额: 25万元

中文摘要: 体相氮掺杂是改变金属氧化物光催化材料的电子结构、提高其可见光响应特性的有效途径,但因受到掺杂过程的热力学/动力学及掺杂引起体相复合中心等因素的限制而难以有效进行。对掺杂过程的分析表明,强金属-氧化学键及氮氧离子间的电荷差异是制约体相氮掺杂的关键因素。结合金属氧化物晶格原子的空间分布和金属-氧成键特性分析,本项目提出基于间隙离子预掺杂弱化金属与氧的化学键,以促进氮替代晶格氧反应的进行,设计浓度和分布可控的氮掺杂光催化材料。拟采用第一性原理计算研究间隙离子对金属-氧成键特性及其对体相氮掺杂过程的热力学/动力学的影响,阐明间隙离子弱化金属-氧化学键及其促进氮掺杂的机理,揭示间隙离子平衡氮氧电荷差异、抑制体相复合中心的物理机制,为发展具有可见光响应特性的高性能氮掺杂光催化材料提供理论指导和科学依据。

中文关键词: 光催化;化学键弱化;氮掺杂;可见光吸收;电子结构

英文摘要: Nitrogen bulk doping is an effective strategy to change the electronic structures of metal oxide photocatalysts for visible light response improvement. Unfortunately, it is hard to achieve nitrogen bulk doping in practice, due to both a limited thermodynamic/kinetic solubility of substitutional nitrogen in bulk and nitrogen-induced recombination centers. Therefore,it remains challenging yet highly desirable to devise new doping approach to increase nitrogen solubility in bulk. This challenge is originally stemmed from both strong metal-oxygen (M-O) bonds and charge difference between lattice oxygen and nitrogen dopant in oxide-based photocatalysts.Considering the spatial distribution of lattice atoms and the M-O bonding characteristic in metal oxide photocatalysts, we propose a new doping approach to promote the bulk substitution of lattice oxygen with nitrogen based on the M-O bond weakening by pre-implanted interstitial cations, to design nitrogen-doped photocatalysts with controllable solubility and spatial distribution of nitrogen dopants. By using the first-principles calculations,we intend to study the interstitial cation induced M-O bonding modification and the thermodynamics/kinetics changes for nitrogen bulk doping, aiming at exploring the physics of M-O bond weakening, the driving forces for nitrogen b

英文关键词: photocatalysis;chemical bond weakening;nitrogen doping;visible light absorption;electronic structure

成为VIP会员查看完整内容
0

相关内容

基于对比调整缩放的图自监督学习
专知会员服务
8+阅读 · 2022年4月6日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
14+阅读 · 2021年11月18日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
53+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2020年8月8日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2019年4月9日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
基于对比调整缩放的图自监督学习
专知会员服务
8+阅读 · 2022年4月6日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
14+阅读 · 2021年11月18日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
53+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2020年8月8日
相关资讯
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员