项目名称: 微气泡(群)生成的介尺度机理及工业微气泡发生器科学基础

项目编号: No.91534117

项目类型: 重大研究计划

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 李向阳

作者单位: 中国科学院过程工程研究所

项目金额: 80万元

中文摘要: 微气泡能够有效强化化工、石化、环境和生化等领域中的气-液传质过程。现有的研究无力解决微气泡技术能耗高、产量低的问题,对微气泡(群)生成过程中复杂流体介尺度结构和不同尺度气泡间作用关注不够。本项目针对流体剪切型微气泡生成方式,采用显微照相和PTV(particle tracking velocimetry)实验测量方法,辅以单元胞方法、LES(Large eddy simulation)耦合Level set method数值模拟和流体力学理论分析方法,探索微气泡(群)在流体剪切场中产生介尺度机理与微气泡群输运及向目标反应器分散模型,并以单个微气泡产生的最小热力学功为基准评价各种产生方法的能耗比,确定最优的生成方法和流体力学条件,通过流场设计或组合的方式设计新的低能耗、大流量微气泡生成方法和装置,并开展新生成方法的工程放大研究,最终形成工业微气泡发生器设计基础。

中文关键词: 微气泡群生成;介尺度机理;多相流;传质强化;工程基础

英文摘要: Microbubbles can indensify gas-liquid mass transfer processes in petrochemical, chemical, metallurgical, environmental and biochemical fields. All of the existing microbubble generation methods is unable to solve the problem of high energy consumption and low production of microbubble generation, and the meso-scale structure andcomplex fluids interactionin the process of micro-bubble (group) generation is not focused. In this project, the microphotography and PTV (particle tracking velocimetry) experimental measurement methods, supplemented by numerical simulation (LES (Large eddy simulation)coupled with Level set method) and the fluid mechanics analysis method, are used to explore the generation mechanisms of micro-bubbles shear turbulence field. Energy consumption of various generation methods was evaluated based on the minimum thermodynamic power produced by single microbubble generation. Then the optimal microbubble generating condictions were also determined. By the design or combination of various shear field, a new microbubble generating method and apparatus with lower power consumption and large generating microbubble flow were obtained. After the study on amplification of this new generation method, the scientific basis for industrial engineering microbubble generators would be established.

英文关键词: microbubble group generation;meso-scale mechanisms;multi-phase flow;mass transfer indensification;engineering foundation

成为VIP会员查看完整内容
0

相关内容

2021工业区块链案例集,68页pdf
专知会员服务
84+阅读 · 2021年12月1日
专知会员服务
100+阅读 · 2021年8月23日
专知会员服务
11+阅读 · 2021年7月16日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
103+阅读 · 2021年4月7日
专知会员服务
55+阅读 · 2020年12月20日
专知会员服务
90+阅读 · 2020年10月30日
用扩散模型生成高保真度图像
TensorFlow
1+阅读 · 2021年8月17日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
22+阅读 · 2020年9月16日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
108+阅读 · 2020年2月5日
Arxiv
10+阅读 · 2018年3月23日
小贴士
相关主题
相关VIP内容
2021工业区块链案例集,68页pdf
专知会员服务
84+阅读 · 2021年12月1日
专知会员服务
100+阅读 · 2021年8月23日
专知会员服务
11+阅读 · 2021年7月16日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
103+阅读 · 2021年4月7日
专知会员服务
55+阅读 · 2020年12月20日
专知会员服务
90+阅读 · 2020年10月30日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员