项目名称: 脉冲抽象随机偏微分方程的伪概周期型解研究

项目编号: No.11461019

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 闫作茂

作者单位: 河西学院

项目金额: 36万元

中文摘要: 本项目将首先引入逐段p-阶矩的伪概周期函数、加权伪概周期函数、Stepanov伪概周期函数、Stepanov加权伪概周期函数、h型-Stepanov加权伪概周期函数和∞型-Stepanov加权伪概周期函数,以及逐段依分布伪概周期函数类的概念, 并讨论其函数空间的完备性, 建立相应的复合定理。接着利用半群理论、发展系统理论和随机分析的理论, 展开一阶线性脉冲抽象随机偏微分方程的逐段p-阶矩伪概周期性及逐段依分布伪概周期性的研究。通过着重研究非线性扰动函数所满足的新的复合性质和新的限定条件,以及不动点定理的应用。来研究可分Hilbert空间中几类一阶脉冲抽象随机偏微分方程逐段p-阶矩伪概周期型mild解与逐段依分布伪概周期型mild解的存在性、唯一性与稳定性。本研究将丰富和发展随机概周期函数和逐段伪概周期函数理论,以促进脉冲抽象随机方程概周期性与和逐段伪概周期性理论及其它学科的进一步发展。

中文关键词: 脉冲微分方程;随机泛函微分方程;概周期解;存在性和唯一性;稳定性

英文摘要: The project will first introduce the concept of piecewise p-th moment pseudo almost periodic functions, piecewise p-th moment weighted pseudo almost periodic functions, piecewise p-th moment Stepanov almost periodic functions, piecewise p-th moment Stepanov weighted pseudo almost periodic functions, piecewise p-th moment h-type -Stepanov weighted pseudo almost periodic functions, piecewise p-th moment ∞-type-Stepanov weighted pseudo almost periodic functions and piecewise distributional pseudo almost periodic type functions, and discuss the completeness of the function space, establish the corresponding composite theorem. Then by using the semigroup theory, evolution systems theory and the stochastic analysis theory , to study the piecewise p-th moment pseudo almost periodicity and piecewise distributional pseudo almost periodicity of first-order linear impulsive abstract stochastic partial equations. By focusing on the new composite properties and new constraints conditions of perturbation functions, and applying the fixed point theorem. To study the existence, uniqueness and stability of piecewise p-th moment pseudo almost periodic type mild solutions and piecewise distributional pseudo almost periodic type mild solutions for several first-order impulsive abstract stochastic partial differential equations in separable Hilbert spaces . This study will enrich and develop the almost periodic functions theory and the piecewise stochastic pseudo almost periodic function theory, to promote the further development of the theory of almost periodicity and piecewise pseudo almost periodicity for impulsive abstract stochastic differential equations and other disciplines.

英文关键词: Impulsive differential equations;Stochastic functional differential equations;Almost periodic solutions;Existence and uniquence;Stability

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
34+阅读 · 2022年1月14日
【干货书】面向工程师的随机过程,448页pdf
专知会员服务
80+阅读 · 2021年11月3日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
110+阅读 · 2020年12月18日
【经典书】统计学理论,925页pdf
专知会员服务
167+阅读 · 2020年12月6日
专知会员服务
143+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
64+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
74+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
内嵌物理知识神经网络(PINN)是个坑吗?
PaperWeekly
15+阅读 · 2022年2月14日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
42+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
GAN的数学原理
算法与数学之美
16+阅读 · 2017年9月2日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年5月21日
小贴士
相关主题
相关VIP内容
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
34+阅读 · 2022年1月14日
【干货书】面向工程师的随机过程,448页pdf
专知会员服务
80+阅读 · 2021年11月3日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
110+阅读 · 2020年12月18日
【经典书】统计学理论,925页pdf
专知会员服务
167+阅读 · 2020年12月6日
专知会员服务
143+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
64+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
74+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
48+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
内嵌物理知识神经网络(PINN)是个坑吗?
PaperWeekly
15+阅读 · 2022年2月14日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
42+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
GAN的数学原理
算法与数学之美
16+阅读 · 2017年9月2日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员