项目名称: 基于无透镜傅里叶变换数字全息的三维形貌与变形实时测量研究

项目编号: No.11462009

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 夏海廷

作者单位: 昆明理工大学

项目金额: 60万元

中文摘要: 随着现代科学技术的发展,尤其是微纳米技术和现代制造业的发展,对物体表面的微小形貌与变形的实时三维测量需求日趋强烈。数字全息法测量分辨率可达激光波长量级,尤其适合于微小形貌与变形的三维测量。目前现有的数字全息方法基本可以实现对三维变形的实时测量,但是对三维形貌的实时测量还没有比较好的解决办法。本项目采用无透镜傅里叶变换数字全息法,结合多相机立体测量技术,实现对微小形貌与变形的实时三维测量。项目采用严格的标量衍射理论深入分析无透镜傅里叶变换全息法的成像原理,建立基于不同方向的物光相位信息计算物体表面三维形貌与变形的模型、基于物光相位信息的三维测量系统标定计算模型,构建可以同时测量微小形貌与变形的实时三维测量系统,为微纳米器件等微小物体的力学检测及损伤失效分析提供一种新的、有效的测量方法。

中文关键词: 光测力学;三维形貌;三维变形;数字全息;实时测量

英文摘要: With the development of modern science and technology, especially micro/nano-technology and modern manufacturing industry, the needs of 3D real-time measurement for micro shape and deformation are becoming more and more intense. Digital holography is especially suitable for 3D measurement of micro shape and deformation because of its high resolution of about laser wavelength. Currently, the existing digital holographic methods can basically realize real-time measurement of 3D deformation, but can not absolutely realize the real-time measurement of 3D shape. In this project, the 3D real-time measurement for micro shape and deformation will be realized using lensless Fourier transform digital holography combined with stereophotogrammetry with multi-cameras. Based on analyzing the priciple of lensless Fourier transform digital holography using strict scalar diffraction theory, the model of 3D shape and deformation calculation with phases from different directions and the model of calibration based on object wave phase information are established. The 3D real-time measurement system for micro shape and deformation is constructed. This project can provide an novle and effective method for the mechanical measurement and damage analysis of micro objects such as MEMS.

英文关键词: photomechanics;three-dimensional shape;three-dimensional deformation;digital holography;real-time measurement

成为VIP会员查看完整内容
0

相关内容

【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
54+阅读 · 2021年4月4日
专知会员服务
35+阅读 · 2021年2月20日
专知会员服务
45+阅读 · 2020年12月4日
基于视觉的三维重建关键技术研究综述
专知会员服务
154+阅读 · 2020年5月1日
YOLO 实现吸烟行为监测
极市平台
1+阅读 · 2021年10月30日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2018年6月27日
小贴士
相关VIP内容
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
50+阅读 · 2021年5月19日
专知会员服务
54+阅读 · 2021年4月4日
专知会员服务
35+阅读 · 2021年2月20日
专知会员服务
45+阅读 · 2020年12月4日
基于视觉的三维重建关键技术研究综述
专知会员服务
154+阅读 · 2020年5月1日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员