We propose a Bayesian convolutional neural network built upon Bayes by Backprop and elaborate how this known method can serve as the fundamental construct of our novel, reliable variational inference method for convolutional neural networks. First, we show how Bayes by Backprop can be applied to convolutional layers where weights in filters have probability distributions instead of point-estimates; and second, how our proposed framework leads with various network architectures to performances comparable to convolutional neural networks with point-estimates weights. In the past, Bayes by Backprop has been successfully utilised in feedforward and recurrent neural networks, but not in convolutional ones. This work symbolises the extension of the group of Bayesian neural networks which encompasses all three aforementioned types of network architectures now.

15
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

0
16
下载
预览

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.

0
17
下载
预览

Many real-world problems can be represented as graph-based learning problems. In this paper, we propose a novel framework for learning spatial and attentional convolution neural networks on arbitrary graphs. Different from previous convolutional neural networks on graphs, we first design a motif-matching guided subgraph normalization method to capture neighborhood information. Then we implement subgraph-level self-attentional layers to learn different importances from different subgraphs to solve graph classification problems. Analogous to image-based attentional convolution networks that operate on locally connected and weighted regions of the input, we also extend graph normalization from one-dimensional node sequence to two-dimensional node grid by leveraging motif-matching, and design self-attentional layers without requiring any kinds of cost depending on prior knowledge of the graph structure. Our results on both bioinformatics and social network datasets show that we can significantly improve graph classification benchmarks over traditional graph kernel and existing deep models.

0
4
下载
预览

With the widespread applications of deep convolutional neural networks (DCNNs), it becomes increasingly important for DCNNs not only to make accurate predictions but also to explain how they make their decisions. In this work, we propose a CHannel-wise disentangled InterPretation (CHIP) model to give the visual interpretation to the predictions of DCNNs. The proposed model distills the class-discriminative importance of channels in networks by utilizing the sparse regularization. Here, we first introduce the network perturbation technique to learn the model. The proposed model is capable to not only distill the global perspective knowledge from networks but also present the class-discriminative visual interpretation for specific predictions of networks. It is noteworthy that the proposed model is able to interpret different layers of networks without re-training. By combining the distilled interpretation knowledge in different layers, we further propose the Refined CHIP visual interpretation that is both high-resolution and class-discriminative. Experimental results on the standard dataset demonstrate that the proposed model provides promising visual interpretation for the predictions of networks in image classification task compared with existing visual interpretation methods. Besides, the proposed method outperforms related approaches in the application of ILSVRC 2015 weakly-supervised localization task.

0
5
下载
预览

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

0
9
下载
预览

Combining Bayesian nonparametrics and a forward model selection strategy, we construct parsimonious Bayesian deep networks (PBDNs) that infer capacity-regularized network architectures from the data and require neither cross-validation nor fine-tuning when training the model. One of the two essential components of a PBDN is the development of a special infinite-wide single-hidden-layer neural network, whose number of active hidden units can be inferred from the data. The other one is the construction of a greedy layer-wise learning algorithm that uses a forward model selection criterion to determine when to stop adding another hidden layer. We develop both Gibbs sampling and stochastic gradient descent based maximum a posteriori inference for PBDNs, providing state-of-the-art classification accuracy and interpretable data subtypes near the decision boundaries, while maintaining low computational complexity for out-of-sample prediction.

0
3
下载
预览

The model parameters of convolutional neural networks (CNNs) are determined by backpropagation (BP). In this work, we propose an interpretable feedforward (FF) design without any BP as a reference. The FF design adopts a data-centric approach. It derives network parameters of the current layer based on data statistics from the output of the previous layer in a one-pass manner. To construct convolutional layers, we develop a new signal transform, called the Saab (Subspace Approximation with Adjusted Bias) transform. It is a variant of the principal component analysis (PCA) with an added bias vector to annihilate activation's nonlinearity. Multiple Saab transforms in cascade yield multiple convolutional layers. As to fully-connected (FC) layers, we construct them using a cascade of multi-stage linear least squared regressors (LSRs). The classification and robustness (against adversarial attacks) performances of BP- and FF-designed CNNs applied to the MNIST and the CIFAR-10 datasets are compared. Finally, we comment on the relationship between BP and FF designs.

0
4
下载
预览

Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.

0
16
下载
预览

Classifying large scale networks into several categories and distinguishing them according to their fine structures is of great importance with several applications in real life. However, most studies of complex networks focus on properties of a single network but seldom on classification, clustering, and comparison between different networks, in which the network is treated as a whole. Due to the non-Euclidean properties of the data, conventional methods can hardly be applied on networks directly. In this paper, we propose a novel framework of complex network classifier (CNC) by integrating network embedding and convolutional neural network to tackle the problem of network classification. By training the classifiers on synthetic complex network data and real international trade network data, we show CNC can not only classify networks in a high accuracy and robustness, it can also extract the features of the networks automatically.

0
5
下载
预览

Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for each graph data while training. To efficiently learn the graph, a distance metric learning is proposed. Extensive experiments on nine graph-structured datasets have demonstrated the superior performance improvement on both convergence speed and predictive accuracy.

0
4
下载
预览
小贴士
相关论文
Zonghan Wu,Shirui Pan,Guodong Long,Jing Jiang,Xiaojun Chang,Chengqi Zhang
16+阅读 · 5月24日
Hongwei Wang,Jure Leskovec
17+阅读 · 2月17日
Hao Peng,Jianxin Li,Qiran Gong,Senzhang Wang,Yuanxing Ning,Philip S. Yu
4+阅读 · 2019年2月25日
CHIP: Channel-wise Disentangled Interpretation of Deep Convolutional Neural Networks
Xinrui Cui,Dan Wang,Z. Jane Wang
5+阅读 · 2019年2月7日
Yao Ma,Ziyi Guo,Zhaochun Ren,Eric Zhao,Jiliang Tang,Dawei Yin
9+阅读 · 2018年10月24日
Parsimonious Bayesian deep networks
Mingyuan Zhou
3+阅读 · 2018年10月17日
Interpretable Convolutional Neural Networks via Feedforward Design
C. -C. Jay Kuo,Min Zhang,Siyang Li,Jiali Duan,Yueru Chen
4+阅读 · 2018年10月5日
Keyulu Xu,Weihua Hu,Jure Leskovec,Stefanie Jegelka
16+阅读 · 2018年10月1日
Ruyue Xin,Jiang Zhang,Yitong Shao
5+阅读 · 2018年4月8日
Ruoyu Li,Sheng Wang,Feiyun Zhu,Junzhou Huang
4+阅读 · 2018年1月10日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
深度卷积神经网络中的降采样
极市平台
7+阅读 · 2019年5月24日
disentangled-representation-papers
CreateAMind
19+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
17+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
21+阅读 · 2017年9月8日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top