项目名称: 含梯度介质通道中的双面粒子的输运

项目编号: No.11505128

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 李云云

作者单位: 同济大学

项目金额: 18万元

中文摘要: 双面粒子 (Janus particle)是一类两面具有不同性质的粒子,它的一面表现出物理或化学活性,另一面为惰性。这种对称性破缺使双面粒子能够从周围环境中获得自推进力,从而产生诸如定向运动以及绝对负迁移率等独特的输运行为。这些独特的输运行为使双面粒子在表面活性剂,电子器件,生物传感等方面具有潜在应用,吸引了多学科的工作者的持续关注。另外,在梯度浓度介质中,双面粒子能够产生定向运动并且可以通过外界通道来调控,使实现靶向给药,分子机器人等成为可能,必将成为未来的一个研究方向。本项目将从动力学角度出发,数值模拟和理论分析相结合全面探讨梯度介质中双面粒子的运动特性:(1)产生定向运动的必要条件;(2)皱褶通道中,双面粒子的运动及扩散行为,同时探寻双面粒子输运的理论分析方法;(3)通过调控外界通道来控制粒子运动的机制。

中文关键词: 双面粒子;自推进力;动力学行为;布朗运动;皱褶通道

英文摘要: There is one type of particles consisting of two sides with different properties. Such particles are the so-called Janus particles, only one side of which is physically or chemically active. Thanks to their asymmetric structure, Janus particles can take advantage from the environment to form self-propulsion. Self-propulsion is the ability for the autonomous directional motion and absolute negative, in the absence of external drives. Due to their unique properties, Janus particles potentially can be applied as functional surfactants, electronic devices, optical biosensors etc. There is increasing interest in Janus particles among scientists from different fields. Moreover, the Janus particles act like molecular “robots” under the fluid with concentration gradient and can be manipulated by the channel. Therefore, Janus particle can be potentially used as drug deliverer or molecular robots , which will be the hot topic in the future. Our proposal will investigate the dynamic behavior of Janus particles in the fluid with concentration gradient numerically and theoretically, and include the following three parts: (1) The condition to generate directional motion; (2) Under the confinement of corrugated channel, the properties of the Janus particles motion and diffusion. Moreover, we will develop the new method for the theoretical analysis. (3) The mechanism of controlling the motion of Janus particles via manipulation of the geometric confinement.

英文关键词: Janus particles ;self-propelled ;dynamic behavior;Brownian motion;Corrugated Channel

成为VIP会员查看完整内容
0

相关内容

专知会员服务
75+阅读 · 2021年10月19日
港中文等最新《多模态元学习》综述论文
专知会员服务
122+阅读 · 2021年10月8日
专知会员服务
101+阅读 · 2021年8月23日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
「深度神经网络 FPGA 」最新2022研究综述
专知
3+阅读 · 2022年3月26日
OPPO Find N,全新折叠旗舰全球发布
ZEALER订阅号
0+阅读 · 2021年12月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
22+阅读 · 2022年2月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
小贴士
相关主题
相关VIP内容
专知会员服务
75+阅读 · 2021年10月19日
港中文等最新《多模态元学习》综述论文
专知会员服务
122+阅读 · 2021年10月8日
专知会员服务
101+阅读 · 2021年8月23日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
22+阅读 · 2022年2月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
微信扫码咨询专知VIP会员