项目名称: 弹性固体残余应力场的原位声能控制机理

项目编号: No.51275042

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 徐春广

作者单位: 北京理工大学

项目金额: 80万元

中文摘要: 受现场使用环境和条件限制,服役大型金属桁架结构、船体、压力容器、结构件、机体、车体、导轨等机械构件出现残余应力时,无法或很难用回火、载荷法、冲击振动法等传统方法消除或改变残余应力状态,因此,迫切需要研究残余应力分布的在原位消除或控制方法。 研究高能声场与材料残余应力场的作用机理,探讨高能声场波动能量松弛或重建材料晶格间约束力的物理过程,分析微观、介观和宏观跨尺度残余应力的调控原理,形成基于超声波传播和弹性能作用的残余应力调控理论,寻找一种消除和控制残余应力的简便而有效的方法,实现对在役机械构件残余应力分布的调控。 通过有效控制高能声束和声激励模式实现声束在构件内部的局部定量聚焦,实现对在役机械构件局部残余应力分布的原位消除、抑制和重建等调控作用,提高服役机械构件整体强度、抗疲劳和耐腐蚀能力,增强构件使用寿命、安全性和可靠性。

中文关键词: 残余应力;高能超声;应力调控;应力梯度;

英文摘要: The residual stress will be occurred in in-service large mechanical components, including metal truss structure, hull, pressure vessels, structural parts, machine body, car body, guide rail and so on, because of the environment and conditions restrictions, it's impossible or difficult to use such the raditional methods as tempering, loading, impact vibration to relieve or change the state of the residual stress. Therefore, it is urgently necessary to propose a method to relieve or control the profile of residual stress in situ. We study the effect of high energy acoustic field and the physical mechanism of material residual stress relaxation, investigate the mechanism of high energy acoustic field wave energy to break or reconstruct binding force between lattices in material, probe the control mechanism on micro, meso, and macro state of cross-scale residual stress. It preliminarily forms that control theory of residual stress based on ultrasonic wave theory. It will provide a simple and effective method to relieve or control residual stress, and realize the control of residual stress profile for in-service mechanical components. The achievements will provide a control theory of residual stress and a simple and effective control technology, though the high energy acoustic beam and acoustic excitation mode contro

英文关键词: Residual stress;High-energy ultrasonic;Stress regulation;Stress gradient;

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附论文+PPT 《复杂地下作业中的决策支持》
专知会员服务
40+阅读 · 2022年4月16日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
38+阅读 · 2021年2月8日
《常微分方程》笔记,419页pdf
专知会员服务
70+阅读 · 2020年8月2日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
57+阅读 · 2020年7月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员