项目名称: 外加共振螺旋场对托卡马克等离子体密度影响的研究

项目编号: No.11505069

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 胡启明

作者单位: 华中科技大学

项目金额: 23万元

中文摘要: 利用外加共振螺旋场控制等离子体中的磁流体不稳定性(边界局域模、电阻壁模、新经典撕裂模等)已成为当今国内外磁约束核聚变研究的热点之一。实验研究发现共振螺旋场的作用可能会改变等离子体密度,影响等离子体的约束性能。但是目前对其作用机制仍不清楚,特别是对等离子体转动速度等参数在密度变化中所起作用缺乏充分理解,研究共振螺旋场影响等离子体密度的作用机制是其积极应用的基础。本项目拟利用J-TEXT上的外加共振螺旋场,通过调节螺旋场的频率和模式,从实验上研究共振螺旋场对等离子体密度的影响,重点研究密度变化与等离子体转动、安全因子等参数的关系。采用双流体数值模拟,对实验结果进行图像解析,给出螺旋场改变密度的基本图像和作用机制;探索螺旋场提升等离子体密度的实验条件。项目的执行可为进一步理解共振螺旋场引起密度变化的物理机制提供参考。

中文关键词: 共振螺旋场;等离子体密度;实验研究;数值模拟;等离子体转动

英文摘要: Active control of magnetohydrodynamic instabilities, such as edge localized modes (ELMs), resistive wall modes (RWMs) and neoclassical tearing modes (NTMs), by using externally applied resonant magnetic perturbations (RMPs) have become a hot topic in magnetic confinement fusion. Recent experimental study finds that the application of RMPs changes plasma density, resulting in influence of plasma confinement. However, it is unclear about the responsible mechanism till now, especially on the role of plasma parameters, i.e. plasma rotation velocity, therefore to study and understand the mechanism is the basis of successful application of RMPs. In this project, we plan to study the influence of RMPs on plasma density in J-TEXT by using externally applied RMPs and changing the frequency and resonant component of RMPs. In the experiment, the role of plasma parameters, such as plasma rotation, edge safety factor and so on, will be especially studied in detail. In order to further understand the influence of RMPs on plasma density, numerical modeling based on two-fluid equations will be carried out, so as to provide the detail basic picture of the evolution of density caused by RMPs and the mechanism. Furthermore, experimental conditions for improvement of density by RMPs will be explored. The related research will be very helpful to give a well insight into the effect of RMPs on plasma density.

英文关键词: resonant magnetic perturbations ;plasma density;experimental research;numerical modeling;plasma rotation

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
42+阅读 · 2021年7月10日
专知会员服务
37+阅读 · 2021年4月23日
专知会员服务
73+阅读 · 2021年3月27日
【经典书】数理统计学,142页pdf
专知会员服务
98+阅读 · 2021年3月25日
专知会员服务
32+阅读 · 2021年2月17日
小目标检测技术研究综述
专知会员服务
123+阅读 · 2020年12月7日
专知会员服务
183+阅读 · 2020年11月23日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
17+阅读 · 2021年2月15日
小贴士
相关主题
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
专知会员服务
42+阅读 · 2021年7月10日
专知会员服务
37+阅读 · 2021年4月23日
专知会员服务
73+阅读 · 2021年3月27日
【经典书】数理统计学,142页pdf
专知会员服务
98+阅读 · 2021年3月25日
专知会员服务
32+阅读 · 2021年2月17日
小目标检测技术研究综述
专知会员服务
123+阅读 · 2020年12月7日
专知会员服务
183+阅读 · 2020年11月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员