The rapid proliferation of AI-generated content (AIGC) has reshaped the dynamics of digital marketing and online consumer behavior. However, predicting the diffusion trajectory and market impact of such content remains challenging due to data heterogeneity, non linear propagation mechanisms, and evolving consumer interactions. This study proposes an AI driven Decision Support System (DSS) that integrates multi source data including social media streams, marketing expenditure records, consumer engagement logs, and sentiment dynamics using a hybrid Graph Neural Network (GNN) and Temporal Transformer framework. The model jointly learns the content diffusion structure and temporal influence evolution through a dual channel architecture, while causal inference modules disentangle the effects of marketing stimuli on return on investment (ROI) and market visibility. Experiments on large scale real-world datasets collected from multiple online platforms such as Twitter, TikTok, and YouTube advertising show that our system outperforms existing baselines in all six metrics. The proposed DSS enhances marketing decisions by providing interpretable real-time insights into AIGC driven content dissemination and market growth patterns.
翻译:人工智能生成内容(AIGC)的快速扩散重塑了数字营销与在线消费者行为的动态格局。然而,由于数据异质性、非线性传播机制以及不断演化的消费者交互作用,预测此类内容的扩散轨迹与市场影响仍具挑战性。本研究提出一种AI驱动的决策支持系统(DSS),该系统通过混合图神经网络(GNN)与时序Transformer框架,整合了包括社交媒体流、营销支出记录、消费者参与日志及情感动态在内的多源数据。该模型通过双通道架构联合学习内容扩散结构与时间影响力演化,同时利用因果推断模块解析营销刺激对投资回报率(ROI)与市场可见性的影响。基于从Twitter、TikTok及YouTube广告等多个在线平台收集的大规模真实数据集实验表明,本系统在全部六项指标上均优于现有基线方法。所提出的DSS通过提供对AIGC驱动的内容传播与市场增长模式的可解释实时洞察,有效增强了营销决策能力。