High-dimensional Kronecker-structured estimation faces a conflict between non-convex scaling ambiguities and statistical robustness. The arbitrary factor scaling distorts gradient magnitudes, rendering standard fixed-threshold robust methods ineffective. We resolve this via Scaled Robust Gradient Descent (SRGD), which stabilizes optimization by de-scaling gradients before truncation. To further enforce interpretability, we introduce Scaled Hard Thresholding (SHT) for invariant variable selection. A two-step estimation procedure, built upon robust initialization and SRGD--SHT iterative updates, is proposed for canonical matrix problems, such as trace regression, matrix GLMs, and bilinear models. The convergence rates are established for heavy-tailed predictors and noise, identifying a phase transition where optimal convergence rates recover under finite noise variance and degrade optimally for heavier tails. Experiments on simulated data and two real-world applications confirm superior robustness and efficiency of the proposed procedure.
翻译:高维Kronecker结构估计面临非凸尺度模糊性与统计鲁棒性之间的冲突。任意的因子缩放会扭曲梯度幅度,使得标准的固定阈值鲁棒方法失效。我们通过尺度鲁棒梯度下降法(SRGD)解决了这一问题,该方法在截断前对梯度进行去缩放处理以稳定优化过程。为进一步增强可解释性,我们引入了尺度硬阈值法(SHT)以实现不变的变量选择。针对典型矩阵问题(如迹回归、矩阵广义线性模型和双线性模型),我们提出了一种基于鲁棒初始化和SRGD--SHT迭代更新的两步估计流程。该研究为具有重尾预测变量和噪声的场景建立了收敛速率,揭示了一个相变现象:在有限噪声方差下可恢复最优收敛速率,而在更重的尾部条件下收敛速率会以最优方式衰减。在模拟数据和两个实际应用上的实验验证了所提流程具有优越的鲁棒性和效率。