In this study, we present a secure smart contract-based Verifiable Random Function (VRF) model, addressing the shortcomings of existing systems. As quantum computing emerges, conventional public key cryptography faces potential vulnerabilities. To enhance our VRF's robustness, we employ post-quantum Ring-LWE encryption for generating pseudo-random sequences. Given the computational intensity of this approach and associated on-chain gas costs, we propose a hybrid architecture of VRF system where on-chain and off-chain can communicate in a scalable and secure way. To ensure the validity and integrity of the off-chain computations (e.g., Ring-LWE encryption), we employ a quantum-secure linkable ring signature scheme on NTRU lattice and also delegated key generation (DKG) with a secure key encapsulation mechanism (KEM). Our decentralized VRF employs multi-party computation (MPC) with blockchain-based decentralized identifiers (DID), ensuring the collective efforts of enhanced randomness and security. We show the security and privacy advantages of our proposed VRF model with the approximated estimation of overall temporal and spatial complexities. We also evaluate our VRF MPC model's entropy and outline its Solidity smart contract integration. This research also provides a method to produce and verify the VRF output's proof, optimal for scenarios necessitating randomness and validation. Lastly, using NIST SP800-22 test suite for randomness, we demonstrate the commendable result with a 97.73% overall pass rate on 11 standard tests and 0.5459 of average p-value for the total 176 tests.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月12日
Arxiv
0+阅读 · 2024年3月11日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员