Extensive work has demonstrated the effectiveness of Vision Transformers. The plain Vision Transformer tends to obtain multi-scale features by selecting fixed layers, or the last layer of features aiming to achieve higher performance in dense prediction tasks. However, this selection is often based on manual operation. And different samples often exhibit different features at different layers (e.g., edge, structure, texture, detail, etc.). This requires us to seek a dynamic adaptive fusion method to filter different layer features. In this paper, unlike previous encoder and decoder work, we design a neck network for adaptive fusion and feature selection, called ViTController. We validate the effectiveness of our method on different datasets and models and surpass previous state-of-the-art methods. Finally, our method can also be used as a plug-in module and inserted into different networks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
1+阅读 · 2023年6月14日
Arxiv
17+阅读 · 2022年2月23日
VIP会员
Top
微信扫码咨询专知VIP会员