Parametric verification of linear temporal properties for stochastic models can be expressed as computing the satisfaction probability of a certain property as a function of the parameters of the model. Smoothed model checking (smMC) aims at inferring the satisfaction function over the entire parameter space from a limited set of observations obtained via simulation. As observations are costly and noisy, smMC is framed as a Bayesian inference problem so that the estimates have an additional quantification of the uncertainty. In smMC the authors use Gaussian Processes (GP), inferred by means of the Expectation Propagation algorithm. This approach provides accurate reconstructions with statistically sound quantification of the uncertainty. However, it inherits the well-known scalability issues of GP. In this paper, we exploit recent advances in probabilistic machine learning to push this limitation forward, making Bayesian inference of smMC scalable to larger datasets and enabling its application to models with high dimensional parameter spaces. We propose Stochastic Variational Smoothed Model Checking (SV-smMC), a solution that exploits stochastic variational inference (SVI) to approximate the posterior distribution of the smMC problem. The strength and flexibility of SVI make SV-smMC applicable to two alternative probabilistic models: Gaussian Processes (GP) and Bayesian Neural Networks (BNN). The core ingredient of SVI is a stochastic gradient-based optimization that makes inference easily parallelizable and that enables GPU acceleration. In this paper, we compare the performances of smMC against those of SV-smMC by looking at the scalability, the computational efficiency and the accuracy of the reconstructed satisfaction function.


翻译:线性时间属性的参数验证可被表达为计算某一属性满足概率关于模型参数的函数。平滑模型检查(smMC)的目标是从通过仿真获得的观察结果的有限集合中推断整个参数空间上满足函数。由于观察结果昂贵且有噪声,因此将平滑模型检查界定为贝叶斯推断问题,以便进行有关不确定性的估计。在smMC中,作者使用期望传播算法推断的高斯过程(GP)。这种方法提供了准确的重建和具有统计学上明确不确定性的估计。然而,它继承了GP的众所周知的可扩展性问题。在本文中,我们利用概率机器学习的最新进展将这个限制推向前进,使smMC的贝叶斯推断可扩展至更大的数据集,并使其适用于具有高维参数空间的模型。我们提出了随机变分平滑模型检查(SV-smMC)的解决方案,该解决方案利用随机变分推断(SVI)来逼近smMC问题的后验分布。SVI的优点和灵活性使SV-smMC适用于两种替代的概率模型:高斯过程(GP)和贝叶斯神经网络(BNN)。SVI的核心元素是基于随机梯度的优化,使推断易于并行化,并实现了GPU加速。在本文中,我们通过考察重建满足函数的可扩展性、计算效率和准确性,比较了smMC和SV-smMC的性能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员