We study $C^1$-regular surfaces in $R^3$ that admit tilings by a finite number of rigid motion congruence classes of tiles. We construct examples with various topologies and present a framework for a systematic study, mainly concentrating on monotilings. A finite edge prototile is a tile that has only a finite number of possible interfaces with adjacent copies of itself. We describe all monotilings by such tiles with three or less edges. We consider the question of whether a monohedral polyhedron can be smoothed to become a finite edge type tileable surface with the same graph structure, and we give an example where this is not possible. Finally we list some open problems.
翻译:我们研究 $R^3$ 中 $C^1$-正则曲面,这些曲面允许通过有限数量的刚体运动合同类瓷砖进行铺砌。我们构造了具有不同拓扑结构的示例,并提出了一个系统性研究的框架,主要集中于单铺砌。有限边原型瓷砖是指仅具有有限数量与自身相邻副本接口的瓷砖。我们描述了所有由三条或更少边的此类瓷砖构成的单铺砌。我们探讨了单面体多面体是否可以通过平滑处理成为具有相同图结构的有限边类型可铺砌曲面,并给出了一个不可能实现的示例。最后,我们列出了一些未解决的问题。