Recent advancement in the field of pervasive healthcare monitoring systems causes the generation of a huge amount of lifelog data in real-time. Chronic diseases are one of the most serious health challenges in developing and developed countries. According to WHO, this accounts for 73% of all deaths and 60% of the global burden of diseases. Chronic disease classification models are now harnessing the potential of lifelog data to explore better healthcare practices. This paper is to construct an optimal feature selection-based unsupervised logistic regression model (OFS-ULR) to classify chronic diseases. Since lifelog data analysis is crucial due to its sensitive nature; thus the conventional classification models show limited performance. Therefore, designing new classifiers for the classification of chronic diseases using lifelog data is the need of the age. The vital part of building a good model depends on pre-processing of the dataset, identifying important features, and then training a learning algorithm with suitable hyper parameters for better performance. The proposed approach improves the performance of existing methods using a series of steps such as (i) removing redundant or invalid instances, (ii) making the data labelled using clustering and partitioning the data into classes, (iii) identifying the suitable subset of features by applying either some domain knowledge or selection algorithm, (iv) hyper parameter tuning for models to get best results, and (v) performance evaluation using Spark streaming environment. For this purpose, two-time series datasets are used in the experiment to compute the accuracy, recall, precision, and f1-score. The experimental analysis proves the suitability of the proposed approach as compared to the conventional classifiers and our newly constructed model achieved highest accuracy and reduced training complexity among all among all.


翻译:由于生命数据分析具有敏感性,因此常规分类模型显示的性能有限。因此,在使用生命数据对慢性疾病进行分类方面设计新的分类方法是这个时代的需要。建立良好的模型的关键部分取决于对数据集的预处理,确定重要特征,然后用适当的超高参数来培训学习算法,以便提高业绩。拟议方法利用一系列步骤改进现有方法的绩效,例如(一) 消除冗余和无效实例,(二) 利用某些数据组合和将数据分解成不同类别,以便进行比较,(三) 利用最佳的实验性模型,确定用于最佳的模型。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员