The minimum accuracy heuristic evaluates quantum feature maps without requiring full quantum support vector machine (QSVM) training. However, the original formulation is computationally expensive, restricted to balanced datasets, and lacks theoretical backing. This work generalizes the metric to arbitrary binary datasets and formally proves it constitutes a certified lower bound on the optimal empirical accuracy of any linear classifier in the same feature space. Furthermore, we introduce Monte Carlo strategies to efficiently estimate this bound using a random subset of Pauli directions, accompanied by rigorous probabilistic guarantees. These contributions establish minimum accuracy as a scalable, theoretically sound tool for pre-screening feature maps on near-term quantum devices.
翻译:最小准确度启发式方法无需完整量子支持向量机(QSVM)训练即可评估量子特征映射。然而,其原始形式计算成本高昂、仅限于平衡数据集且缺乏理论支撑。本研究将该度量推广至任意二分类数据集,并严格证明其在相同特征空间中构成任意线性分类器最优经验准确度的可证明下界。此外,我们引入蒙特卡洛策略,通过随机选取泡利方向子集来高效估计该下界,并提供严格的概率保证。这些贡献确立了最小准确度作为一种可扩展、理论完备的工具,可用于近期量子设备上特征映射的预筛选。