Uniform confidence bands for functions are widely used in empirical analysis. A variety of simple implementation methods (most notably multiplier bootstrap) have been proposed and theoretically justified. However, an implementation over a literally continuous index set is generally computationally infeasible, and practitioners therefore compute the critical value by evaluating the statistic on a finite evaluation grid. This paper quantifies how fine the evaluation grid must be for a multiplier bootstrap procedure over finite grid points to deliver valid uniform confidence bands. We derive an explicit bound on the resulting coverage error that separates discretization effects from the intrinsic high-dimensional bootstrap approximation error on the grid. The bound yields a transparent workflow for choosing the grid size in practice, and we illustrate the implementation through an example of kernel density estimation.
翻译:函数的一致置信带在实证分析中被广泛使用。多种简单的实现方法(最显著的是乘子自助法)已被提出并得到理论验证。然而,在字面连续的指标集上实现通常计算不可行,因此实践者通过在有穷评估网格上计算统计量来确定临界值。本文量化了评估网格必须精细到何种程度,才能使得在有限网格点上进行的乘子自助法产生有效的一致置信带。我们推导了由此产生的覆盖误差的显式界,该界将离散化效应与网格上固有的高维自助法近似误差分离开来。该界为实践中选择网格大小提供了一个透明的工作流程,我们通过核密度估计的示例说明了具体实现。