The Persistent Homology Transform (PHT) summarizes a shape in $\R^m$ by collecting persistence diagrams obtained from linear height filtrations in all directions on $\mathbb{S}^{m-1}$. It enjoys strong theoretical guarantees, including continuity, stability, and injectivity on broad classes of shapes. A natural way to compare two PHTs is to use the bottleneck distance between their diagrams as the direction varies. Prior work has either compared PHTs by sampling directions or, in 2D, computed the exact \textit{integral} of bottleneck distance over all angles via a kinetic data structure. We improve the integral objective to $\tilde O(n^5)$ in place of earlier $\tilde O(n^6)$ bound. For the \textit{max} objective, we give a $\tilde O(n^3)$ algorithm in $\mathbb{R}^2$ and a $\tilde O(n^5)$ algorithm in $\mathbb{R}^3$.


翻译:持续同调变换(PHT)通过收集在$\mathbb{S}^{m-1}$上所有方向的线性高度过滤所获得的持续同调图,来概括$\R^m$中的形状。它具有强大的理论保证,包括在广泛形状类别上的连续性、稳定性和单射性。比较两个PHT的一种自然方法是使用它们在不同方向上的持续同调图之间的瓶颈距离。先前的工作要么通过采样方向来比较PHT,要么在二维空间中通过动力学数据结构计算所有角度上瓶颈距离的精确积分。我们将积分目标的计算复杂度改进为$\tilde O(n^5)$,取代了之前的$\tilde O(n^6)$界限。对于最大值目标,我们在$\mathbb{R}^2$中给出了一个$\tilde O(n^3)$算法,在$\mathbb{R}^3$中给出了一个$\tilde O(n^5)$算法。

0
下载
关闭预览

相关内容

【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员