We present a novel graph-based learning of EEG representations with gradient alignment (GEEGA) that leverages multi-domain information to learn EEG representations for brain-computer interfaces. Our model leverages graph convolutional networks to fuse embeddings from frequency-based topographical maps and time-frequency spectrograms, capturing inter-domain relationships. GEEGA addresses the challenge of achieving high inter-class separability, which arises from the temporally dynamic and subject-sensitive nature of EEG signals by incorporating the center loss and pairwise difference loss. Additionally, GEEGA incorporates a gradient alignment strategy to resolve conflicts between gradients from different domains and the fused embeddings, ensuring that discrepancies, where gradients point in conflicting directions, are aligned toward a unified optimization direction. We validate the efficacy of our method through extensive experiments on three publicly available EEG datasets: BCI-2a, CL-Drive and CLARE. Comprehensive ablation studies further highlight the impact of various components of our model.
翻译:我们提出了一种新颖的基于图学习的脑电表征与梯度对齐方法(GEEGA),该方法利用多域信息来学习脑机接口中的脑电表征。我们的模型利用图卷积网络融合基于频率的地形图嵌入和时频谱图嵌入,以捕获域间关系。GEEGA通过引入中心损失和成对差异损失,解决了脑电信号因时间动态性和受试者敏感性而导致的类间可分离性挑战。此外,GEEGA采用梯度对齐策略来解决来自不同域及融合嵌入的梯度冲突,确保指向矛盾方向的梯度差异被对齐至统一的优化方向。我们在三个公开可用的脑电数据集(BCI-2a、CL-Drive和CLARE)上通过大量实验验证了该方法的有效性。全面的消融研究进一步凸显了我们模型各组件的影响。