In this paper, we develop a learning-based approach for decentralized submodular maximization. We focus on applications where robots are required to jointly select actions, e.g., motion primitives, to maximize team submodular objectives with local communications only. Such applications are essential for large-scale multi-robot coordination such as multi-robot motion planning for area coverage, environment exploration, and target tracking. But the current decentralized submodular maximization algorithms either require assumptions on the inter-robot communication or lose some suboptimal guarantees. In this work, we propose a general-purpose learning architecture towards submodular maximization at scale, with decentralized communications. Particularly, our learning architecture leverages a graph neural network (GNN) to capture local interactions of the robots and learns decentralized decision-making for the robots. We train the learning model by imitating an expert solution and implement the resulting model for decentralized action selection involving local observations and communications only. We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots. The simulation results show our approach nearly matches the coverage performance of the expert algorithm, and yet runs several orders faster with more than 30 robots. The results also exhibit our approach's generalization capability in previously unseen scenarios, e.g., larger environments and larger networks of robots.


翻译:在本文中,我们开发了一种基于学习的分权子模块最大化方法。 我们侧重于需要机器人共同选择行动的应用程序,例如运动原始设备,以将团队子模块目标仅与本地通信最大化。 这些应用程序对于大规模多机器人协调,例如区域覆盖、环境探索和目标跟踪的多机器人运动规划至关重要。 但是,目前的分权子模块最大化算法要么需要假设机器人之间的通信,要么失去一些亚最佳保障。 在这项工作中,我们提议了一个通用学习架构,以大规模实现亚模式最大化,同时进行分散通信。特别是,我们的学习架构利用一个图形神经网络(GNN)来捕捉机器人的当地互动,并学习机器人的分散决策。我们通过模仿专家解决方案来培训学习模式,并采用由此产生的模式,在仅涉及本地观测和通信的分权行动选择方面,我们基于GNN的学习方法在与大型机器人网络积极目标覆盖的情景中的表现。 模拟结果显示我们的方法近30个方法,在以往的专家演算中,在更大规模的专家演算中,还展示了比以往更大规模的机器人演算能力。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员