*《Stabilizing Transformers for Reinforcement Learning》E Parisotto, H. F Song, J W. Rae, R Pascanu, C Gulcehre, S M. Jayakumar, M Jaderberg, R L Kaufman, A Clark, S Noury, M M. Botvinick, N Heess, R Hadsell [DeepMind] (2019)

成为VIP会员查看完整内容
59

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
李宏毅-201806-中文-Deep Reinforcement Learning精品课程分享
深度学习与NLP
15+阅读 · 2018年6月20日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
李宏毅-201806-中文-Deep Reinforcement Learning精品课程分享
深度学习与NLP
15+阅读 · 2018年6月20日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
微信扫码咨询专知VIP会员