Many recent works have proposed methods to train classifiers with local robustness properties, which can provably eliminate classes of evasion attacks for most inputs, but not all inputs. Since data distribution shift is very common in security applications, e.g., often observed for malware detection, local robustness cannot guarantee that the property holds for unseen inputs at the time of deploying the classifier. Therefore, it is more desirable to enforce global robustness properties that hold for all inputs, which is strictly stronger than local robustness. In this paper, we present a framework and tools for training classifiers that satisfy global robustness properties. We define new notions of global robustness that are more suitable for security classifiers. We design a novel booster-fixer training framework to enforce global robustness properties. We structure our classifier as an ensemble of logic rules and design a new verifier to verify the properties. In our training algorithm, the booster increases the classifier's capacity, and the fixer enforces verified global robustness properties following counterexample guided inductive synthesis. We show that we can train classifiers to satisfy different global robustness properties for three security datasets, and even multiple properties at the same time, with modest impact on the classifier's performance. For example, we train a Twitter spam account classifier to satisfy five global robustness properties, with 5.4% decrease in true positive rate, and 0.1% increase in false positive rate, compared to a baseline XGBoost model that doesn't satisfy any property.


翻译:最近许多工作都提出了培训具有本地稳健性特性的分类师的方法,这些方法可以明显地消除大多数投入(但不是所有投入)的规避攻击类别。由于数据分布转换在安全应用程序中非常常见,例如,经常观测到的恶意软件检测,因此本地稳健性不能保证在部署分类器时,财产保留在无形投入中。因此,更可取的是执行所有投入所持有的全球稳健性特性,这比地方稳健性强得多。在本文件中,我们提出了一个框架和工具,用于培训满足全球稳健性特性的分类员。我们定义了全球稳健性新概念,更适合安全分类师。我们设计了一个新型的增强剂-更新剂培训框架,以强制全球稳健性特性。我们把我们的分类器构建成逻辑规则的组合,并设计一个新的校正性文件。在我们的培训算中,增强分类器的能力,在反演化合成后,改进了全球稳健性特性。我们显示,我们可以在三个全球稳健性基线值中培训分类者满足不同的全球稳健性基线性特性,在三个安全性模型中,提高性能性能性能的精确性能。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年4月10日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员