Many modern time series arise on networks, where each component is attached to a node and interactions follow observed edges. Classical time-varying parameter VARs (TVP-VARs) treat all series symmetrically and ignore this structure, while network autoregressive models exploit a given graph but usually impose constant parameters and stationarity. We develop network state-space models in which a low-dimensional latent state controls time-varying network spillovers, own-lag persistence and nodal covariate effects. A key special case is a network time-varying parameter VAR (NTVP-VAR) that constrains each lag matrix to be a linear combination of known network operators, such as a row-normalised adjacency and the identity, and lets the associated coefficients evolve stochastically in time. The framework nests Gaussian and Poisson network autoregressions, network ARIMA models with graph differencing, and dynamic edge models driven by multivariate logistic regression. We give conditions ensuring that NTVP-VARs are well-defined in second moments despite nonstationary states, describe network versions of stability and local stationarity, and discuss shrinkage, thresholding and low-rank tensor structures for high-dimensional graphs. Conceptually, network state-space models separate where interactions may occur (the graph) from how strong they are at each time (the latent state), providing an interpretable alternative to both unstructured TVP-VARs and existing network time-series models.


翻译:许多现代时间序列产生于网络之上,其中每个分量附着于节点,且交互遵循观测到的边结构。经典的时变参数向量自回归模型(TVP-VARs)对所有序列进行对称处理而忽略了这一结构,而网络自回归模型虽利用了给定图结构,但通常施加恒定参数和平稳性假设。本文发展了一种网络状态空间模型,其中低维潜状态控制着时变的网络溢出效应、自身滞后持续性及节点协变量效应。一个关键特例是网络时变参数向量自回归模型(NTVP-VAR),该模型将每个滞后矩阵约束为已知网络算子的线性组合(如行归一化邻接矩阵与单位矩阵),并让关联系数随时间随机演化。该框架嵌套了高斯与泊松网络自回归模型、具有图差分结构的网络ARIMA模型,以及由多元逻辑回归驱动的动态边模型。我们给出了确保NTVP-VAR在二阶矩意义下良定的条件(尽管状态非平稳),描述了稳定性和局部平稳性的网络版本,并讨论了适用于高维图的收缩、阈值化与低秩张量结构。从概念上讲,网络状态空间模型将交互可能发生的位置(图结构)与每个时刻的交互强度(潜状态)分离开来,为无结构的TVP-VAR模型与现有网络时间序列模型提供了一种可解释的替代方案。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
23+阅读 · 2021年6月22日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
23+阅读 · 2021年6月22日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员