Generative art systems often involve high-dimensional and complex parameter spaces in which aesthetically compelling outputs occupy only small, fragmented regions. Because of this combinatorial explosion, artists typically rely on extensive manual trial-and-error, leaving many potentially interesting configurations undiscovered. In this work we make two contributions. First, we introduce ParamExplorer, an interactive and modular framework inspired by reinforcement learning that helps the exploration of parameter spaces in generative art algorithms, guided by human-in-the-loop or even automated feedback. The framework also integrates seamlessly with existing p5.js projects. Second, within this framework we implement and evaluate several exploration strategies, referred to as agents.
翻译:生成艺术系统通常涉及高维且复杂的参数空间,其中美学上引人注目的输出仅占据微小且碎片化的区域。由于这种组合爆炸,艺术家通常依赖大量手动试错,导致许多潜在有趣的配置未被发现。在本工作中,我们做出两项贡献。首先,我们介绍了ParamExplorer,这是一个受强化学习启发的交互式模块化框架,旨在通过人在回路甚至自动化反馈的引导,辅助探索生成艺术算法中的参数空间。该框架还能与现有的p5.js项目无缝集成。其次,在该框架内,我们实现并评估了多种探索策略,这些策略被称为智能体。