Generative art systems often involve high-dimensional and complex parameter spaces in which aesthetically compelling outputs occupy only small, fragmented regions. Because of this combinatorial explosion, artists typically rely on extensive manual trial-and-error, leaving many potentially interesting configurations undiscovered. In this work we make two contributions. First, we introduce ParamExplorer, an interactive and modular framework inspired by reinforcement learning that helps the exploration of parameter spaces in generative art algorithms, guided by human-in-the-loop or even automated feedback. The framework also integrates seamlessly with existing p5.js projects. Second, within this framework we implement and evaluate several exploration strategies, referred to as agents.


翻译:生成艺术系统通常涉及高维且复杂的参数空间,其中美学上引人注目的输出仅占据微小且碎片化的区域。由于这种组合爆炸,艺术家通常依赖大量手动试错,导致许多潜在有趣的配置未被发现。在本工作中,我们做出两项贡献。首先,我们介绍了ParamExplorer,这是一个受强化学习启发的交互式模块化框架,旨在通过人在回路甚至自动化反馈的引导,辅助探索生成艺术算法中的参数空间。该框架还能与现有的p5.js项目无缝集成。其次,在该框架内,我们实现并评估了多种探索策略,这些策略被称为智能体。

0
下载
关闭预览

相关内容

艺术迄今依旧没有公认的定义,目前广义的艺术乃是由具有智能思考能力的动物,透过各种形式及工具以表达其情感与意识,因而产生的结果。艺术不只存在于人类社会中,也存在于其他相对高等的动物。
【TPAMI2024】增强视频-语言表示的结构时空对齐方法
专知会员服务
24+阅读 · 2024年6月30日
基于模型的强化学习综述
专知会员服务
48+阅读 · 2023年1月9日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【Tutorial】计算机视觉中的Transformer,98页ppt
专知
21+阅读 · 2021年10月25日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【TPAMI2024】增强视频-语言表示的结构时空对齐方法
专知会员服务
24+阅读 · 2024年6月30日
基于模型的强化学习综述
专知会员服务
48+阅读 · 2023年1月9日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
相关资讯
【Tutorial】计算机视觉中的Transformer,98页ppt
专知
21+阅读 · 2021年10月25日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员