The study of neural representations, both in biological and artificial systems, is increasingly revealing the importance of geometric and topological structures. Inspired by this, we introduce Event2Vec, a novel framework for learning representations of discrete event sequences. Our model leverages a simple, additive recurrent structure to learn composable, interpretable embeddings. We provide a theoretical analysis demonstrating that, under specific training objectives, our model's learned representations in a Euclidean space converge to an ideal additive structure. This ensures that the representation of a sequence is the vector sum of its constituent events, a property we term the linear additive hypothesis. To address the limitations of Euclidean geometry for hierarchical data, we also introduce a variant of our model in hyperbolic space, which is naturally suited to embedding tree-like structures with low distortion. We present experiments to validate our hypothesis. Quantitative evaluation on the Brown Corpus yields a Silhouette score of 0.0564, outperforming a Word2Vec baseline (0.0215), demonstrating the model's ability to capture structural dependencies without supervision.


翻译:在生物和人工系统中,神经表示的研究日益揭示出几何与拓扑结构的重要性。受此启发,我们提出了Event2Vec,一种用于学习离散事件序列表示的新框架。该模型利用简单的加性循环结构来学习可组合、可解释的嵌入表示。我们提供了理论分析,证明在特定训练目标下,模型在欧几里得空间中学到的表示会收敛于理想的加性结构。这确保了序列的表示是其组成事件的向量和,这一性质我们称为线性加性假设。为克服欧几里得几何在处理层次性数据时的局限性,我们还引入了该模型在双曲空间中的变体,该空间天然适用于以低失真嵌入树状结构。我们通过实验验证了假设。在布朗语料库上的定量评估显示,Silhouette分数达到0.0564,优于Word2Vec基线(0.0215),证明了模型在无监督条件下捕捉结构依赖关系的能力。

0
下载
关闭预览

相关内容

【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
专知会员服务
15+阅读 · 2021年9月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员