Chemical reaction networks (CRNs) model systems where molecules interact according to a finite set of reactions such as $A + B \to C$, representing that if a molecule of $A$ and $B$ collide, they disappear and a molecule of $C$ is produced. CRNs can compute Boolean-valued predicates $\phi:\mathbb{N}^d \to \{0,1\}$ and integer-valued functions $f:\mathbb{N}^d \to \mathbb{N}$; for instance $X_1 + X_2 \to Y$ computes the function $\min(x_1,x_2)$. We study the computational power of execution bounded CRNs, in which only a finite number of reactions can occur from the initial configuration (e.g., ruling out reversible reactions such as $A \rightleftharpoons B$). The power and composability of such CRNs depend crucially on some other modeling choices that do not affect the computational power of CRNs with unbounded executions, namely whether an initial leader is present, and whether (for predicates) all species are required to "vote" for the Boolean output. If the CRN starts with an initial leader, and can allow only the leader to vote, then all semilinear predicates and functions can be stably computed in $O(n \log n)$ parallel time by execution bounded CRNs. However, if no initial leader is allowed, all species vote, and the CRN is "noncollapsing" (does not shrink from initially large to final $O(1)$ size configurations), then execution bounded CRNs are severely limited, able to compute only eventually constant predicates. A key tool is to characterize execution bounded CRNs as precisely those with a nonnegative linear potential function that is strictly decreased by every reaction, a result that may be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员